XS Reference Manual

Taiichi Yuasa

November 2, 2006

T

Copyright (C) 2003 by Taiichi Yuasa. All Rights Reserved.

Contents
1 Introduction
2 Notations and Terminology

3 Objects and Lexical Structure

3.1 Booleans
3.2 Imtegers Ll
3.3 Symbols
34 Consesand Lists e
3.5 Functions
3.6 Characters.
3.7 Strings
3.8 Reader Constants o...
3.9 Comments i i e e e e

4 Evaluation

41 Forms
4.2 Environments
4.3 Lambda Expressions

5 Top-level forms

6 Predicates

6.1 Class Predicates
6.2 Logical Operators.
6.3 Equality

7 Variables and Functions

8 Control Structure

8.1 Simple Sequencing
8.2 Conditions. e
8.3 Dynamic Non-local Exits
84 Timing
9 Integer Operations
9.1 Comparison e
9.2 Arithmetic. L
9.3 Bit-wise Operations
9.4 Random Numbers

10 List Processing

13

15
15
16
16

17

19
19
19
19
20

21
21
21
22
23

23

111/0

12 RCX Control
12.1 Sound System
12.2 Buttons
12.3 LCD Display

12.4 IR Communication Status

12.5 Battery Level

13 Lego Devices
13.1 Motors
13.2 Light Sensors
13.3 Rotation Sensors . .
13.4 Temperature Sensors
13.5 Touch Sensors
13.6 Lamps

14 Memory Management
Index

XS Handy Reference

ii

25

27
27
28
29
29
30

30
30
31
32
33
33
33

34

35

37

1 Introduction

XS is a programming system for the Lego MindStorms Robotics Invention Sys-
tem (RIS). The central component of RIS is a programmable block called RCX,
with an 8-bit CPU. RCX programs are prepared on the front-end PC and down-
loaded to the RCX through IR communication. By attaching motors, sensors,
and other component blocks, one can build robots that are controlled by user-
supplied RCX programs.

XS has been developed to provide an interactive and satisfactory program-
ming environment for RIS. It supports programming in a Lisp language with
extensions for controlling RCX devices. Specifically it supports the following
features.

1. read-eval-print loop

interactive definition and re-definition of functions
appropriate error messages with backtraces

function trace and untrace

dynamic object allocation and garbage collection
robustness against program errors and stack/buffer overflow
terminal interrupts

truly tail-recursive interpreter

© 0 NS TR WwN

event/timer waiting and asynchronous event watchers
10. interface to RCX devices such as motors, sensors, lights, and sounds

These features other than the last three are commonly found in ordinary Lisp
systems. Feature 8 is found in ordinary Scheme interpreters and feature 9 or its
variation is found in multi-threaded Lisp systems. Therefore, from the user’s
point of view, XS looks just like an ordinary Lisp system with extensions for
controlling RCX devices.

The system of XS consists of the front-end subsystem on the PC and the
subsystem on the RCX. These subsystems cooperate with each other to provide
an interactive programming environment similar to an ordinary Lisp system.

Figure 1 illustrates a sample session with XS. When the front-end subsystem
is invoked (line 1), it displays a prompt “>” and starts interaction with the user.
Following the prompt, the user inputs a function definition (line 4) and tests it
(line 7). Since the function definition refers an undefined variable nil, an error
message is printed out (line 8) followed by a backtrace (line 9). Then the user
defines the variable nil to be the empty list (line 10), and tests the function
again (line 12). This time the function returns a correct answer (line 13) and

1 % xs

2 Welcome to XS: Lisp on Lego MindStorms
3

4 >(define (ints n)

5 (if (= n 0) nil (cons n (ints (- n 1)))))
6 ints

7 >(ints 3)

8 Error: undefined variable -- nil

9 Backtrace: ints > ints > ints

10 >(define nil ())

11 nil

12 >(ints 3)

13 (3 21)

14 >(bye)

15 sayonara

16 9%

Figure 1: A sample XS session (line numbers are added for explanation).

the satisfied user ends the XS session (line 14). The user sees nothing special
with this sample session. Internally, however, things are quite different from
ordinary Lisp systems, because the evaluator is located in an RCX.

When the front-end subsystem is invoked, it first checks whether the RCX
subsystem is ready. If not ready (e.g., the user forgot to turn-on the RCX),
then the front-end gives up interaction with the user.

% xs
RCX is not responding.
Make sure RCX is running, and try again.

h

When an expression is input from the PC keyboard, the front-end preprocesses
the S-expression and sends the result to the RCX subsystem. The evaluator then
evaluates the expression and sends back the value, which is displayed on the PC
display. In case of a function definition, the evaluator installs the definition and
returns the name symbol of the function.

The user can interrupt a running program by pressing Control-C. In the
following example of interaction, the user pressed Control-C while the let ex-
pression is executing an infinite loop.

>(let loop (O (loop))
Error: terminal interrupt
Backtrace: let > #<function>

>

A request for terminal interrupt from the front-end is passed to the RCX through
IR communication. In case the RCX is out of the IR range, it fails to receive
an interrupt request. For such a case, XS provides another means for terminal
interrupt: pressing the View button on the RCX brick. If the RCX is within the
IR range, terminal interrupt by the View button behaves in exactly the same
way as in the case of terminal interrupt by Control-C. Otherwise, the front-end
keeps waiting for a return value from the RCX, because there is no means for
the front-end to recognize the interrupt caused by the View button. In this case,
the user should move the RCX into the IR range after interrupting the program,
and then press Control-C.

2 Notations and Terminology

The description of each language element of XS starts with a “header” which is
in one of the following formats.

syntax [Top-level Form]
syntax [Special Form)]
(function-name argument-specification) [Function]
constant-name [Reader Constant]

The first two formats are used for top-level forms and special forms, respectively.
These forms provide syntactic constructs of XS such as those for conditional
branches and variable bindings, and the full syntax of each construct is given
in the header. An error will be signaled if the user gives a top-level form or a
special form that does not obey its syntax.

The third format is used for built-in functions. Each header in this format
starts with the name of the built-in function, followed by the specification of
acceptable number and classes of arguments (see below). The general rule is that
the function behaves as described, only when the supplied arguments satisfy the
specification in the header. Otherwise, an error will be signaled. Exceptions to
this rule, if any, are explicitly mentioned in the description of the function. The
last format is used to start descriptions of reader constants. Each header in this
format gives only the name of the constant.

The following syntax notations are used throughout this document.

Syntactic variables (i.e., non-terminal symbols) are written in italic.
Terminal symbols are written in type-face.

“thing*” denotes zero or more occurrences of thing.

“[thing]” denotes at most one occurrence of thing.

where thing is a syntactic variable or a syntactic pattern that begins with “(”
and end with the matching “)”.

The following notations are used in argument specification in the headers of
the built-in functions.

1. Argument classes are written in italic. They specify acceptable classes of
arguments. In addition, they are used to denote arguments in the function
descriptions. Only the followings, sometimes with subscripts, are used as
argument classes.

obj for arbitrary XS objects
int for integers

sym for symbols

cons for conses

list for proper lists

fun for functions

2. “classy ... class,” denotes m arguments of the class. The acceptable
number of such arguments is given in terms of a condition on n (either
“n >0" or “n >1”) in the header.

3 Objects and Lexical Structure

XS supports the following six classes of objects. Each object in XS belongs to
exactly one of the classes.

booleans
integers
symbols

the empty list
conses
functions

In addition, XS supports the following “pseudo object” to facilitate program
coding.

characters
strings
3.1 Booleans
Boolean objects are #t and #f. These are used when a function returns a truth
value: #t for true and #f for false.
3.2 Integers

Integers are written in binary, in octal, in decimal, or in hexadecimal, respec-
tively in the following formats.

#b[sign|binary-digits
#o[sign]octal-digits
[#d][sign]decimal-digits
#x[sign]hezadecimal-digits
where
a sign is either “+” or “-”,
a binary-digit is either 0 or 1,

an octal-digit is one of 0, 1, ..., 7,
a decimal-digit is one of 0, 1, ..., 9, and
a hezxadecimal-digit is one of 0,1, ..., 9, a, ..., .

For each format, at least one digit is necessary.
Integer objects are signed and their precision is 14 bits. Thus XS supports
integers in the range from —2'3 (= —8192) to 2!3 — 1 (= 8191).

:most-positive-integer [Reader Constant]
:most-negative-integer [Reader Constant]

The values of these reader constants are 8191 (= 2!% —1) and -8192
(= —213), respectively.

3.3 Symbols

Symbols are objects that can be uniquely identified by their names (or symbol
names). The name of a symbol is a sequence of one or more characters.

A Symbol is denoted by its name if the symbol name satisfies all the following
conditions.

1. The symbol name consists of the following characters.
'#$%&x+-./01
ABCDEFGHIJKL
abcdefghijkl

456789 :<=>70
OPQRSTUVWIXYZI[]
opqrstuvwzxyzd{}

8B =2 N
B =2 w

2. The symbol name does not begin with “:” nor “#”.
3. The symbol name is not the one that consists of a single dot “.”.
4. The symbol name does not match the syntactic format of integers.

If the symbol name does not satisfy one or more conditions above, then denote
the symbol by enclosing the symbol name with vertical bars “|”. If the symbol
name contains a vertical bar, then precede it with a backslash “\”. If the symbol
name contains a backslash, then precede it with another backslash.

Symbol names are case-sensitive. For instance, baz and BAZ are different
symbols.

Names of built-in functions are built-in symbols. Other symbols are user-
defined symbols. When the XS system is started, only built-in symbols exist in
the system. User-defined symbols will be created later. For example, when the
user defines a new global variable with the top-level form define, a new symbol
that names the variable will be created.

Unlike Common Lisp, the symbol name of “NIL” does not automatically
represent the empty list nor the false value.

3.4 Conses and Lists

Conses are objects mainly used to construct data structures such as lists and
trees. A cons object has two objects called the car and the cdr of the cons
object. A cons object is written as

(z1 . x2)

where z1 and x5 denote the car and cdr, respectively, of the cons object.

The empty list represents a list with no elements and is written as (). There
is only one empty list in the XS system and thus () always denotes the same
object.

Data structures whose cdr link ends with the empty list are called /lists.
More precisely, lists are defined recursively as follows.

1. The empty list is a list.
2. A cons object is a list if the object in the cdr part is a list.
3. These and only these objects are lists.
Lists are written as
(x1 T2 ... Tp)
which is equivalent to
(y - (@ . C.oo v (@ - O) ...

Here, n is the length of the list, and each z; (1 < i < n) is called the it" element
of the list. If n is zero, then the list is the empty list ().

Data structures whose cdr link ends with an object other than the empty
list are called dotted lists. Dotted lists are written as

(1 22 ... Tp—1 - Tp)
which is equivalent to

(1 . (@2 . C.ovv v (X1 - Tp) ... D))

3.5 Functions

Function objects can receive some objects as arguments and returns an object
as the value. An operation to send objects to a function and to get its value
is called call. Only function objects can be called. Symbols and lambda lists
(i.e., lists whose first element is the symbol lambda) are not function objects,
and thus cannot be called.

XS provides various built-in functions. All built-in functions are described
in this manual. Some built-in functions are installation-time options. These
functions can be defined by using other built-in functions. Therefore, they may
not be installed in your XS system!, to save the memory space in the RCX
brick. If not installed, load the file 1ib.1sp before you use them. This file
contains definitions of all built-in functions that are installation-time options,
and can be found in the directory where your XS system is stored.

You can define your own functions. Such user-defined functions can be cre-
ated only by lambda forms.

3.6 Characters

Character objects represent those characters that the computer can handle. In
XS, characters are not first-class objects. When the XS reader encounters a
textual representation of a character, the character is converted to its ASCII
code.

Ordinary character objects are written as

#\char

where char is the character that the character object represents. XS supports
the following characters.

L ha () ket , -/

0123456789 :;<=>70
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
C\NT = _ ¢
abcdefghijklmnopgqrstuvwzxyaz
{1}

Some “special characters” are written as
#\name

where name is the “name” of the special character. XS supports the following
special characters.

1In the current distribution package, installation-options are not defined in the RCX sub-
system. Therefore, you have to load the file 1ib.1sp before you use them.

#\tab
#\space
#\newline
#\return
#\page

3.7 Strings

Strings are ordered sequences of characters. Any character that the implemen-
tation supports can be a string element. Strings are written by listing all the
element characters in order, enclosed with double quotes “"”. If the string has a
double quote as its element, the double quote must be preceded by a backslash
“\”. If the string has a backslash as its element, the backslash must be preceded
by another backslash.

In XS, strings are not first-class objects. When the XS reader encounters
a textual representation of a string, the string is converted to a list of ASCII
codes.

3.8 Reader Constants

Reader constants look like symbols but they are converted to integers when they
are read by the XS reader. Reader constants are built-in in the XS system, and
the user cannot define his or her own reader constants. Each reader constant
has a name that begins with a colon “:”, and is converted to a fixed value.

3.9 Comments

7))
)

If an input line contains a semi-colon which is not part of a textual repre-
sentation of an object, then the semi-colon and the following characters in the
line are regarded as a comment.

4 Evaluation

4.1 Forms

Forms are objects that can be evaluated. Some forms can appear only at the
top-level of XS programs. These forms are called top-level forms. Only those
lists that begin with one of the following symbols are top-level forms 2.

define load fork

trace untrace

last-value bye

2Currently, the top-level form fork is available only on the Linux version of XS.

In the rest of this document, forms other than top-level forms are called ordinary
forms or, if there is no possibility of confusion, simply called forms.
The followings are (ordinary) forms in XS.

1. special forms

2. function-call forms
3. variables

4. literals

A form, when evaluated, returns only one object as the value, if it ever returns.

Special Forms

Special forms are those lists whose first element is one of the following symbols.

and or

quote lambda set!
let letx* letrec
begin if catch

wait-until with-watcher

These symbols are called special form names. Evaluation of special forms de-
pends on the symbol.

Function-call Forms

Function-call forms are those lists whose first element is not a special form name.
When a function-call form is evaluated, the first element of the form is evaluated
first. The value must be a function object. Then the elements of the list form
except the first are evaluated one after another, from left to right. The values
of these forms are then passed to the function as the arguments. The value that
the function returns is returned as the value of the function-call form.

The XS system is made proper tail-recursive. A function call is called tail-
recursive if the caller simply returns the value of the callee, without doing any-
thing else. For example,

(define (ints n)
(if (=n 0) () (cons n (ints (- n 1)))))

the call of ints in the body is not tail-recursive because the caller (which hap-
pens to be the same as the callee in this example) has to invoke cons after the
return of ints. On the other hand, the call of ints in the following definition
is tail-recursive.

(define (ints n sofar)
(if (= n 0) sofar (ints (- n 1) (cons n sofar))))

A proper tail-recursive system is a system which replaces all tail-recursive calls
with appropriate jumps so that tail-recursive calls do not consume the stack
space.

Variables

Variables are denoted (or named) by symbols. Every variable in XS has exactly
one object as its value, at any time during the life time.

When a symbol is evaluated as a form, it returns the value of the variable it
names. An error will be signaled if the symbol names no variable.

Like Scheme, XS uses a single name space for variables and functions. Each
named function is stored as the value of the variable with the same name as the
function name. For instance, the function object of the built-in function cons is
stored as the value of the variable named cons. The form (cons 1 2) invokes
the built-in function cons because the system first evaluates the variable cons
and obtains the built-in function object. You can see this by typing the name
of the built-in function.

>cons
#<function cons>

The value of a user-defined variable can be changed by a set! form. How-
ever, variables for built-in functions are immutable, i.e., their values cannot be
changed.

Literals

Objects other than conses (including lists) and symbols are literals. When
evaluated, a literal returns itself as the value.

As mentioned before, strings in XS are not first-class objects and are con-
verted to lists of integers by the reader. Since strings are literals in ordinary
Lisp systems which support first-class strings, we would like to handle strings
as literals in XS programs as well. For instance, we would like to write

(define x "abc")
rather than
(define x ’"abc")

which looks strange to most Lisp programmers. For this purpose, the reader
encloses a string into a quote form when the string appears at a position of an
expression. Thus, both define forms above are converted to:

(define x (97 98 99))

10

4.2 Environments

Evaluation of a form depends on the evaluation environment (or an environment,
for short) at the time of evaluation. The environment consists of three kinds of
bindings.

e variable bindings
A variable binding is a pair consisting of a variable and its name. The
name of the variable is a symbol.

e catcher bindings
A catcher binding is a pair consisting of a catcher and its name. The name
of a catcher can be any object. A catcher is created by the catch form
and is used for dynamic non-local exit.

e watcher bindings
A watcher binding is a pair consisting of a condition and a handler.
The condition and the handler are forms. A watcher is created by the
with-watcher form and is used for asynchronous event handling.

There may exist several evaluation environments at the same time during exe-
cution of an XS program, but only one of them, called the current environment,
is used to evaluate a form.

Initially, the current environment consists only of the bindings for built-in
variables. A new current environment is generated by adding (or establishing) a
binding to the current environment. The old environment becomes the current
environment by removing (or unestablishing) the binding from the new current
environment. When an ordinary form (a form that is not a top-level form)
establishes a binding, the binding is automatically unestablished on exit from
the form. On the other hand, when the top-level form define establishes a
binding, that binding will remain established during the current XS session.
The bindings for built-in variables and those established by the define form
are collectively called global variable bindings. There are no global bindings for
catchers and watchers.

When a function object is created, part of the current environment is saved
in the function object. That part of the environment is called the lezical environ-
ment, and the rest of the environment is called the dynamic environment. When
that function is invoked, an environment is formed consisting of the current dy-
namic environment (i.e., the dynamic environment of the current environment)
and the lexical environment in the function object. This environment becomes
the current environment for the function call. When the function returns, the
current environment before the call becomes the current environment again.
A lexical environment consists of lexical bindings, which are variable bindings
established by ordinary (i.e., non-top-level) forms. Other bindings are called
dynamic binding.

The following rules summarize whether a binding is lexical or dynamic.

11

Bindings for built-in variables are global and thus dynamic.

Bindings that are established by the define form are global and thus
dynamic.

e Other Variable bindings are lexical.
e Catcher bindings and watcher bindings are dynamic.
The current environment is used to evaluate a form in the following ways.

e When a symbol s is used as a variable name, the current lexical environ-
ment is searched for a variable binding whose name is the same as s. If
there are more than one such bindings, the one that was established last
is used. If there is not such binding, the dynamic environment is searched.
An error will be signaled if there is no such binding. The variable of the
selected variable binding is used as the variable that the symbol s names.

e When an object z is specified as a catcher name in the throw form, a
catcher binding whose name is the same (in the sense of eq?) as z will
be retrieved from the current environment. If there are more than one
such catcher bindings, the one that was established last is retrieved. The
throw form returns from that catcher. An error will be signaled if there
is no such binding.

e The XS system periodically (approximately every 100 msec) checks the
watcher environment to see if there is a watcher binding whose condition
is satisfied. If there is, the system suspends the current program execution
and starts executing the handler of the watcher. If there are more than one
such watcher bindings, the one that was established last will be selected.
When execution of the handler is finished, the suspended execution will
be resumed.

4.3 Lambda Expressions

Functions are defined by lambda expressions. A lambda expression is a list that
begins with the symbol lambda.

(lambda lambda-list form*)

where the sequence of the forms are called the body of the function. Lambda
expressions are special forms and thus can be evaluated. When evaluated, a
lambda expression creates a new function object, in which the current environ-
ment is saved.

The lambda-list of a lambda expression specifies the parameters that the
function can receive. The general format of a lambda-list is the following.

(sym* [. sym |)

12

When the function is invoked, the lambda-list establishes a variable binding
for each sym. These bindings are unestablished on return from the function.
Variables that are created by a lambda-list are called parameters according to
the tradition of programming languages. The initial values of the parameters
are determined by the arguments that are supplied to the function.

1. The symbols except the one after the dot “.” are names of required pa-
rameters. When the function is invoked, arguments to these parameters
must be given. That is, when n required parameters are specified in the
lambda list, then at least n arguments must be supplied. The i** argu-
ment (1 < i < n) becomes the value of the i*" required parameter. An
error will be signaled if too few arguments are supplied and there is no
argument that corresponds to a required parameter.

2. The symbol after the dot “.” if any is the name of the rest parameter. All
non-required arguments to the function are linked together as a list, and
the list becomes the value of the rest parameter. The (n + i)" argument
becomes the it" element of the list, where n is the number of the required
parameters. An error will be signaled if there remains an argument that
does not correspond to a required parameter, when the rest parameter is
not specified in the lambda list.

Each parameter name must not be the name of a top-level form or a special
form, but can be the name of a built-in function.

The body of a function is a sequence of zero or more forms. When the
function is invoked, the forms in the body are evaluated from left to right,
after the parameter bindings are established. Then the value of the last form
is returned as the value of the function. If the body has no forms, then the
function returns the empty list (). In this document, we sometimes use the
notation “. body” in place of “form™*”, and say “evaluates the body and returns
the value” to mean:

“Evaluates the forms from left to right. Discards all the values of
the forms except for the value of the last form (if any), which is
then returned as the value of the body. If no form is supplied, the
body simply returns ().”

With this notation, a lambda expression is written as a list in the following
format.

(lambda lambda-list . body)

5 Top-level forms

(define sym form) [Top-level Form)]

13

Evaluates form and establishes a global variable binding named sym
whose initial value is identical to the value of form. The value of the
named variable may be modified by set!. The symbol sym must
not be a top-level form name, a special form name, nor a built-in
function name.

(define (sym . lambda-list) . body) [Top-level Form)]
Creates a function defined by the lambda expression
(lambda lambda-list . body)

and establishes a global binding named sym for the created function.
This form is equivalent to:

(define sym (lambda lambda-list . body))

The symbol sym must not be a top-level form name, a special form
name, nor a built-in function name.

(load string) [Top-level Form]

Loads a program from the file named string. The contents of the file
must be a sequence of top-level expressions. The effect of loading
from the file is the same as supplying the top-level expressions in
the file from the PC keyboard.

(fork sym, sym., string,; string, ... string,) (n >1) [Top-level Form)]

Creates a subprocess of the front-end subsystem and executes the
program that is specified by the path string,. The other strings (i.e.,
string,, . .., string,,) are passed to the program as arguments. This
top-level form establishes global bindings named sym, and sym., for
the port numbers to write to the standard input and to read from
the standard output, respectively, of the forked subprocess. These
port numbers can be used to communicate with the subprocess by
using the I/O functions of XS, such as read and write.

This top-level form is currently available only on the Linux version
of X8S.

(trace sym) [Top-level Form)]

Starts tracing the function named sym. Only user-defined functions
can be traced. When a traced function is invoked, its arguments and
return value will be displayed together with the function name. This
top-level form returns the function name sym. Tracing of a function
can be canceled by the top-level form untrace.

14

(untrace sym) [Top-level Form)]

Cancels tracing of the function named sym. Returns the function
name sym, if the named function is a traced function. Otherwise,
returns #£f.

(last-value) [Top-level Form]

Returns the value of the last top-level expression. This top-level
form is useful when the front-end failed to receive the last value
from the RCX for some reasons. If the evaluation of the last top-
level expression ends with an error, the error message and backtrace
will be displayed on the PC display.

(bye) [Top-level Form]

Ends the current XS session. The evaluator in the RCX will be
stopped. So, be sure to restart the evaluator by pressing the Run
button when you start another XS session.

6 Predicates

6.1 Class Predicates

(boolean? obj) [Function]
Returns #t if obj is a boolean object. Otherwise, returns #f.

(integer? obj) [Function]
Returns #t if obj is an integer object. Otherwise, returns #£.

(null? obj) [Function]
Returns #t if obj is the empty list. Otherwise, returns #£.

(pair? obj) [Function]
Returns #t if obj is a cons object. Otherwise, returns #f.

(symbol? obj) [Function]
Returns #t if obj is a symbol object. Otherwise, returns #f.

(function? obj) [Function]

Returns #t if obj is a function object. Otherwise, returns #f.

15

6.2 Logical Operators

(not obj) [Function]
Returns #t if obj is #f. Otherwise, returns #f.

(and form*) [Special Form)]
Evaluates the forms from left to right until one of them evaluates
to #f, in which case the and form returns #£. If none of the forms
evaluates to #£, then returns the value of the last form. If no form
is supplied, then the and form simply returns #t.

(or form*) [Special Form)]
Evaluates the forms from left to right until one of them evaluates to
non-#£, in which case the or form returns the non-#f value. If all of
the forms evaluates to #f, then returns #£. If no form is supplied,
then the or form simply returns #f£.

6.3 Equality
(eq? obj; obj,y) [Function]

Returns #t if obj, and obj, are the same (or identical) object. Oth-
erwise, returns #f.

XS adopts the following rules, which are used to determine whether two objects
are identical.

Each of (), #t, and #f denotes a unique object.

Integer objects are identical iff they represent the same integer value.
Symbols are identical iff their names are the same.

Built-in functions are identical iff their names are the same.

When a user-defined function is created by a lambda expression, it is not
identical to any already existing object.

When a cons object is read (by the read-eval-print loop or by the function
read) or created (by functions such as cons), it is not identical to any
already existing object.

XS guarantees that once a variable binding is established with the initial
value z, or is set to x by set!, the value of the variable remains identical to z
until the value is changed by set!.

Similarly, the value of the car (or cdr) field of a cons remains identical until it
is replaced by set-car! (or set-cdr!). Thus the function car (or cdr) applied
to the same cons object always returns the same value until the car (or cdr)
field of the cons object is replaced by set-car! (or set-cdr!).

16

7 Variables and Functions

(quote obj) [Special Form)]
Simply returns obj. (quote o0bj) can be written as ’obj.
(set! sym form) [Special Form)]

Evaluates the form and replaces the value of the variable named by
sym, with the value of the form. The value of the form is returned
as the value of the set! form.

(lambda lambda-list . body) [Special Form)]

Creates and returns a function defined by the lambda expression
(see Section 4.3).

(let [name] ((sym form)*) . body) [Special Form)]

Evaluates all forms first from left to right, then establishes, for each
sym, a variable binding named by sym whose initial value is identical
to the value of the corresponding form. Then evaluates the body and
returns the value. The variable bindings will be unestablished on exit
from the let form.

The let form
(let ((z1 formqy) ... (xy form,)) . body)
is equivalent to
((lambda (z1 ... x,) . body) form, ... form,)

When the optional name, which must be a symbol, is supplied, the
let form first establishes a variable binding named name whose
initial value is the lambda expression:

(lambda (xy ... x,) . body)
Thus the let form

(let name ((zy1 formy) ... (x, form,)) . body)
is equivalent to

(let ((name (lambda (xy ... x,) . body)))
(name form; ... form,))

(let* ((sym form)*) . body) [Special Form)]

17

Evaluates the first form and establishes a variable binding named
by the first sym whose initial value is identical to the value of the
first form. Does the same thing for each pair of sym and form, from
left to right. Then evaluates the body and returns the value. The
variable bindings will be unestablished on exit from the let* form.

If no pair of sym and form is supplied, the let* form
(letx () . body)
is equivalent to
(begin . body)
Otherwise, the 1et* form
(let* ((z1 formy) ... (zy form,)) . body)
is equivalent to

(let ((z1 formq))
(letx ((z2 forms) ... (x, form,)) . body))

(letrec ((sym form)*) . body) [Special Form)]

Establishes, for each sym, a variable binding named by sym whose
initial value is (). Then evaluates all forms from left to right, saves
each value in the variable named by the corresponding sym, evalu-
ates the body, and returns the value. The variable bindings will be
unestablished on exit from the letrec form.

The letrec form
(letrec ((z1 formy) ... (z, form,)) . body)
is equivalent to

(et ((zx O) ... (@, O))

(set! zy formy) ... (set! =z, form,) . body)

The primary purpose of this special form is to define local recursive
(either self-recursive or mutual-recursive) functions. If the forms are
lambda expressions, they can call each other because the established
bindings can be accessed in the function bodies.

(apply fun obj, ... obj, list) (n >0) [Function]

Calls the specified function fun and returns whatever the function
returns. Each obj; (1 < i < n) becomes the i'" argument to the
function, and the j* element of the last argument list becomes the
(n + 7)t" argument to the function.

18

(trace-call sym fun list) [Function]

This function is used internally to implement traced functions spec-
ified by the top-level form trace. The user is recommended not to
use this function explicitly.

This function calls the function fun and returns whatever the func-
tion returns. Elements in the list are used as the arguments to the
function, with the i;, element being the iy, argument. In addition,
trace-call displays the trace information of the call as if the func-
tion named sym were traced.

8 Control Structure

8.1 Simple Sequencing

(begin form*) [Special Form)]
Evaluates the forms from left to right. Discards all the values of the
forms except for the value of the last form (if any), which is then
returned as the value of the begin form. If no form is supplied,
begin simply returns ().

8.2 Conditions

(if form, formy [forms]) [Special Form)]
Evaluates form,. If the value of form, is not #f, then evaluates
form, and returns its value. Otherwise, evaluates formg (which
defaults to ()) and returns the value.

8.3 Dynamic Non-local Exits

(catch form . body) [Special Form]
Evaluates the form and establishes a catcher binding named by the
value of the form. Then evaluates the body and returns the value.
Unestablishes the catcher binding on exit from the form. When the
function throw is invoked with the first argument being the name of
the established catcher, the evaluation of the catch form terminates
immediately and the catch form returns the value of the second
argument to the throw call.

(throw obj, obj,) [Function]

If there exists a catcher named by obj,, then returns from the catch
form that established the catcher binding, with the value obj,. An
error will be signaled if there exists no catcher named by the obj,.

19

8.4 Timing

(sleep int) [Function]

Suspends program execution for the specified period of time. The
int, which must be positive, specifies the time for suspension in 1/10
seconds. For example, the argument 5 suspends for 0.5 seconds, and
the argument 50 suspends for 5 seconds. This function returns the
int after the specified period of time.

(time)

[Function]

Returns the “current time” in 1/10 seconds. The system clock of XS
is initialized to zero when the RCX subsystem is started up. Because
of the short length of XS integers, the value of time overflows in
about 13 minutes. Therefore, when the user wants to measure a
time span, it is recommended to reset the system clock with the
function reset-time, before obtaining the starting time.

(reset-time) [Function]

Reset the system clock to zero and returns the “current time”. Since
the system clock is reset, the return value is usually zero.

(wait-until form) [Special Form)]

Waits until the event specified by ezpr happens. The form may be
any expression, which is periodically evaluated until it returns true.
For example,

(wait-until (pressed?))

waits until the Prgm button on the RCX brick is pressed. The
wait-until returns whatever the form returns (which cannot be

#1).

(with-watcher ((form form™*)*) . body) [Special Form)]

Establishes “watchers” that wait for specified events to occur during
execution of the body. When an event occurs, the watcher suspends
execution of the body and execute the associated handler. The gen-
eral form is:

(with-watcher ((event; . handlery)

(event,, . handler,))
body)

20

During execution of the body, the evaluator periodically checks the
specified events. If some event; evaluates to true, then execution
of the body will be suspended and the corresponding handler; will
be executed. Even during the execution of handler;, the evaluator
keeps checking event;;1 to event, and if some event; (j > i) eval-
uates to true, then the evaluator will suspend the running handler;
and executes handler;. When execution of handler; is finished,
the suspended execution of handler; will be resumed. That is,
with-watcher allows nested execution of the handlers with the pri-
ority of the eventsin the reverse order they appear in the with-watcher
form. As execution of all handlers is completed, the execution of the
body resumes.

9 Integer Operations

9.1 Comparison
(= inty ... int,) (n>1) [Function]

Returns #t if all ints are equal. Otherwise, returns #£.

(< inty ... inty) (n>1) [Function]
Returns #t if each int; (1 <@ < n) is less than int;11. Otherwise,
returns #f.

(<= inty ... int,) (n>1) [Function]

Returns #t if each int; (1 < i < n) is less than or equal to int; 1.
Otherwise, returns #f.

(> inty ... inty) (n>1) [Function]
Returns #t if each int; (1 < i < n) is greater than int;;. Otherwise,
returns #£.

(>= int; ... int,) (n>1) [Function]

Returns #t if each int; (1 < i < n) is greater than or equal to int;, .
Otherwise, returns #f.

9.2 Arithmetic
(+ inty ... int,) (n>0) [Function]

Returns the sum of the ints. Returns 0 if no argument is supplied.

XS does not perform overflow checking. If the result of addition does
not fit the 14-bit representation of integer objects, then this function
will return an unexpected value.

21

(- inty ... int,) (n>1) [Function]

If only one argument is supplied, returns the negative of the argu-
ment. If multiple arguments are supplied, this function returns the
result of subtracting int,, . .., int, from int;.

XS does not perform overflow checking. If the result of negation or
subtraction does not fit the 14-bit representation of integer objects,
then this function will return an unexpected value.

(* inty ... int,) (n >0) [Function]

Returns the product of the ints. Returns 1 if no argument is sup-
plied.

XS does not perform overflow checking. If the result of multiplication
does not fit the 14-bit representation of integer objects, then this
function will return an unexpected value.

(/ inty ints) [Function]

Divides int; by ints and returns the quotient in integer. The second
argument int, must not be 0. See the description of remainder
below for the precise return value.

(remainder inty ints) [Function]

Divides int; by inty and returns the remainder. The divider ints
must not be 0.

The result is an integer whose absolute value is less than the absolute
value of ints, and which satisfies the following equation.

int; = (+ (x (/ int; inty) inty) (remainder int; ints))
The sign of the result value is the same as the sign of the dividend

intl .

9.3 Bit-wise Operations

(logand inty ints) [Function]
Returns the bit-wise “and” of int; and ints.

(logior inty ints) [Function]
Returns the bit-wise inclusive “or” of int; and ints.

(logxor inty ints) [Function]

Returns the bit-wise exclusive “or” of int; and ints.

22

(logshl int; ints) [Function]

Returns the integer obtained by shifting the bits that represents int;
by inty bits to the left.

(logshr int; ints) [Function]
Returns the integer obtained by shifting the bits that represents int;
by inty bits to the right.

9.4 Random Numbers

(random int) [Function]

Returns a pseudo random number which is an integer between 0
(inclusive) and the int (exclusive).

10 List Processing
(cons obj, obj,) [Function]

Creates a cons object, sets obj, to the car part and obj, to the cdr
part, and returns the cons object.

(car cons) [Function]
Returns the value in the car part of the cons.

(cdr cons) [Function]
Returns the value in the cdr part of the cons.

(set-car! cons obj) [Function]

Replaces the value in the car part of the cons object with obj, and
returns obj.

(set-cdr! cons obj) [Function]

Replaces the value in the cdr part of the cons object with obj, and
returns obj.

(length list) [Function]

Returns the length of the list as an integer.

This function is an installation-time option (see Section 3.5).

(1ist-ref list int) [Function]

23

Returns the (int — 1)t element of the list. The argument int must
be a non-negative integer. If int is greater than or equal to the
length of the list, then this function returns ().

This function is an installation-time option (see Section 3.5).
(list obj; ... obj,) (n>0) [Function]

Creates and returns a list of length n whose i** element (1 < i < n)
is identical to obj;.

(list* obj, ... obj,) (n>1) [Function]

Creates and returns a dotted list consisting of n — 1 new conses
Cl,.--,cn—1. The car of each ¢; will contain 0bj; and the cdr of each
¢; will contain ¢;41 except for the last c,—1 whose cdr will contain
obj,,.

This function is an installation-time option (see Section 3.5).

(append listy ... list, obj) (n >0) [Function]
Returns the object with all the elements in the lists cons’ed in front
of obj.

This function is an installation-time option (see Section 3.5).
(member obj list) [Function]

Searches the list for an element that is identical to obj. If such
an element is found, returns the sublist starting with the element.
Otherwise, returns #f.

This function is an installation-time option (see Section 3.5).
(assoc obj list) [Function]

Searches the list for an element which is a cons object and whose
value in the car part is identical to the obj. If such an element is
found, returns it. Otherwise, returns #f. Each element of the list
must be a cons object.

This function is an installation-time option (see Section 3.5).
(reverse list) [Function]

Creates and returns a list containing the same elements as the list
but in the reverse order.

This function is an installation-time option (see Section 3.5).

24

11 I/O

:stdin [Reader Constant]
:stdout [Reader Constant]
:stderr [Reader Constant]

These reader constants are used to explicitly specify a standard port
to the I/O functions of XS such as read and write. :stdin repre-
sents the standard input of the front-end subsystem and the value
is 0. :stdout represents the standard output of the front-end sub-
system and the value is 1. :stderr represents the error output of
the front-end subsystem and the value is 2.

(read [int]) [Function]

Reads an object from the PC keyboard and returns the object. An
error will be signaled if the eos (end of stream) is reached before
having read an object.

If the optional int is supplied and is different from the value of the
reader constant :stdin, then this function reads from the specified
port, instead of the PC keyboard.

(read-char [int]) [Function]

Reads one character from the PC keyboard and returns the character
code as an integer. An error will be signaled if the eos (end of stream)
is already reached.

If the optional int is supplied and is different from the value of the
reader constant :stdin, then this function reads from the specified
port, instead of the PC keyboard.

(read-line [int]) [Function]

Reads one line of characters from the PC keyboard and returns them
as a list of character codes. The newline character at the end of the
line will be discarded. An error will be signaled if the eos (end of
stream) is reached before reading a line.

If the optional int is supplied and is different from the value of the
reader constant :stdin, then this function reads from the specified
port, instead of the PC keyboard.

(write obj [int]) [Function]

Writes the obj to the PC display. Returns the obj.

The following output formats are used by the write function. Here,
T denotes the output of the object x by write.

25

Q, #t, and #£f are output as “()”, “#t”, and “#£”, respectively.

e An integer is output in decimal, optionally preceded by a minus
sign.

e For a symbol, the symbol name is output without escape char-

acters such as vertical bars that enclose symbols.

e Alist (1 ... z,) is output as “(Fy ... Tp)”. A dotted list
(xy ... Ty .) is output as “(Ty ... Tp_1 . Tp)”. In
either case, one space character is output between two Ts and
between an T and a dot ‘.’.

e A function is output as “#<function mame>” or “#<function>”,
where name is the name of the function.

If the optional int is supplied and is different from the value of the
reader constant :stdout, then this function writes to the specified
port, instead of the PC display.

(write-char int; [ints]) [Function]

Outputs the character whose character code is the int;. Returns the
int;. For example,

(write-char #\a)
outputs “a” whereas

(write #\a)
outputs “97”.

If the optional int, is supplied and is different from the value of the
reader constant :stdout, then this function writes to the specified
port, instead of the PC display.

(write-string list [int]) [Function]

Outputs the list as a string. Each element of the list must be an
integer. These elements are output as characters in the order they
appear in the list. Returns the list. For example,

(write-string "abc")
outputs “abc” whereas
(write "abc")

outputs “(97 98 99)”.

If the optional int is supplied and is different from the value of the
reader constant :stdout, then this function writes to the specified
port, instead of the PC display.

26

12 RCX Control

12.1 Sound System
(play list) [Function]

Starts playing the tune specified by the list. Each element of the
list must be a pair (pitch . length). The pitch must be an integer
between 0 (the value of the reader constants :A0 and :La0) and 96
(the value of :A8 and :La8) or the integer 97 (the value of :pause).
The length must be a positive integer. The RCX plays the pitches
in the list from left to right, with each pitch for the length units of
time. If a pitch is the :pause, then the tune will be paused for the
length units of time.

This function returns immediately after having initiated the tune,
without waiting for the end of the tune. The return value is usually
(). If the list is too long to play, this function returns the sublist of
the list that will not be played.

If this function is invoked while the RCX is already playing a tune,
then the RCX stops playing that tune and starts playing the new
tune.

(playing?) [Function]

Returns #t if the RCX is currently playing a tune. Otherwise, re-
turns #f. This function is mainly used for checking whether the
RCX has finished playing the last tune.

:A0, :AmO, ..., :Gm8, :A8 [Reader Constants]

These reader constants are used to specify pitches to the function
play. Each constant name is in the following format.

:basic-note[m|octave
The basic-note is one of the seven basic notes:
A H C D E F G

and the optional “m” is the half-note modifier. The octave is a digit
specifying the number of octaves to transpose the pitch. It should
be between 0 (the lowest) and 8 (the highest). Figure 2 lists all the
reader constants in this format. The value of the first constant :A0
is 0, the value of :AmO is 1, and so on. The value of the last constant
:A8 is 96.

:La0, :La#0, ..., :So#8, :La8 [Reader Constants]

27

A0 :AmO :HO
:C1 :Cm1 :D1 :Dmil :E1 :F1 :Fml :G1 :Gml :A1 :Aml :H1
:C2 :Cm2 :D2 :Dm2 :E2 :F2 :Fm2 :G2 :Gm2 :A2 :Am2 :H2
:C3 :Cm3 :D3 :Dm3 :E3 :F3 :Fm3 :G3 :Gm3 :A3 :Am3 :H3
:C4 :Cm4 :D4 :Dm4 :E4 :F4 :Fm4 :G4 :Gm4 :A4 :Am4 :H4
:C5 :Cm5 :D5 :Dm5 :E5 :F5 :Fmb :G5 :Gmb5 :A5 :Amb :H5
:C6 :Cm6 :D6 :Dm6 :E6 :F6 :Fm6 :G6 :Gm6 :A6 :Am6 :H6
:C7 :Cm7 :D7 :Dm7 :E7 :F7 :Fm7 :G7 :Gm7 :A7 :Am7 :H7
:C8 :Cm8 :D8 :Dm8 :E8 :F8 :Fm8 :G8 :Gm8 :A8

Figure 2: List of pitches (1).

These reader constants are also used to specify pitches to the func-
tion play. Each constant name is in the following format.

:basic-note[#]octave
The basic-note is one of:
Do Re Mi Fa So La Si

and the optional sharp-sign is the half-note modifier. The octave is
a digit specifying the number of octaves to transpose the pitch. It
should be between 0 (the lowest) and 8 (the highest). Figure 3 lists
all the reader constants in this format. Each constant has the same
value as the constant at the same position in Figure 2.

:pause [Reader Constant]

This reader constant is used to specify a pause to the function play.
The value of this constant is 97.

12.2 Buttons

The RCX brick has four buttons View, Prgm, On-Off, and Run. Among these,
the View button can be used to cause a terminal interrupt and the Prgm button
can be used to send a signal to the running program.

(pressed?) [Function]

Returns #t if the Prgm button has been pressed recently. Otherwise,
returns #f. For example, the following expression can be used to wait
until the Prgm button is pressed.

28

:La0 :La#0 :SiO
:Dol :Do#1 :Rel :Re#1 :Mil :Fal :Fa#1l :Sol :So#1 :Lal :La#1 :Si1l
:Do2 :Do#2 :Re2 :Re#2 :Mi2 :Fa2 :Fa#2 :S02 :So#2 :La2 :La#2 :Si2
:Do3 :Do#3 :Re3 :Re#3 :Mi3 :Fa3 :Fa#3 :S03 :So#3 :La3 :La#3 :Si3
:Do4 :Do#4 :Red4 :Re#4 :Mi4 :Fad :Fa#4 :So4 :So#4 :La4d :La#4 :Si4
:Do5 :Do#5 :Reb :Re#5 :Mib :Fab :Fa#b :Sob5 :So#b :Lab :La#b :Sib
:Do6 :Do#6 :Re6 :Re#6 :Mi6 :Fab6 :Fa#6 :So6 :So#6 :La6 :La#6 :Si6
:Do7 :Do#7 :Re7 :Re#7 :Mi7 :Fa7 :Fa#7 :So7 :So#7 :La7 :La#7 :Si7
:Do8 :Do#8 :Re8 :Re#8 :Mi8 :Fa8 :Fa#8 :So08 :So#8 :La8

Figure 3: List of pitches (2).

(wait-until (pressed?))

Do not confuse this function with touched?, which is to check if a
touch sensor is touching something.

12.3 LCD Display

(puts list) [Function]

Outputs the list to the LCD display. Each element of the list must
be an integer. These elements are output as characters in the order
they appear in the list. The return value is usually (). Up to five
characters can be displayed on the LCD. If the list is too long,
only the first five characters will be displayed, and puts returns the
sublist of the list that will not be displayed.

(putc inty inty) [Function]

Outputs the int; as a character at the specified column of the LCD
display. The column is specified by the ints, which must be an inte-
ger between 0 (the right-most column) and 4 (the left-most column).
This function returns the int;.

(cls) [Function]

Clears the LCD display and returns ().

12.4 IR Communication Status
(linked?) [Function]

Returns #t if the RCX is currently able to communicate with the
front-end. Otherwise, returns #f£.

29

12.5 Battery Level
(battery) [Function]

Returns the current battery level. The value is an integer in 1/10
volts. For example, if the battery level is 8.5 volts, this function
returns 85. Since the RCX is powered by six AA batteries, the
maximum return value is about 90.

13 Lego Devices

13.1 Motors

Motors are attached to the effector ports A to C of the RCX. In XS programs,
the effector ports are specified with integers: 1 for port A, 2 for port B, and 3
for port C. However, it is convenient to use the following reader constants.

ta [Reader Constant]
:b [Reader Constant]
¢ [Reader Constant]

These reader constants are used to specify effector ports: :a for port
A, :b for port B, and :c for port C. Their values are 1, 2, and 3,
respectively.

The state of a motor is characterized by a direction and a speed. There are
four possible directions, which are specified with the following reader constants.

toff [Reader Constant]
:forward [Reader Constant]
:back [Reader Constant]
:brake [Reader Constant]

These reader constants are used to specify motor directions. With
:forward and :back, the motor moves forward and backward. Ac-
tually, the meanings of “forward” and “backward” depend on how
you connect the motor to the effector port. If the motor does not
move in the direction you intend, connect the motor in a different
way and retry. With :off and :brake, the motor does not move.
The difference is that :brake hinders rotation of the motor, whereas
:off allows the motor to rotate freely. The values of these constants
are: 0 (:o0ff), 1 (:forward), 2 (:back), and 3 (:brake).

The speed of a motor is an integer between 0 and 255. When the speed is
0, the motor does not move even if its current direction is either :forward or

30

:back. When the motor direction is either :off or :brake, the motor does not
move even if its speed is not zero.

:max-speed [Reader Constant)
This is the maximum speed of a motor. Its value is 255.

The following functions are used to change direction and speed of a motor.

(motor int; inty) [Function]

Changes the direction of the motor that is attached to the effector
port inty to the direction ints. Returns the second argument ints,
so that multiple motors can be set up with nested calls such as

(motor :a (motor :c :off))

The port number int; must be one of 1, 2, and 3.
(speed int; ints) [Function]

Changes the speed of the motor that is attached to the effector port
int1 to the speed ints. Returns the second argument int,, so that
multiple motors can be set up with nested calls such as

(speed :a (speed :c :max-speed))

The port number int; must be one of 1, 2, and 3.

13.2 Light Sensors

Light sensors are active sensors. You have to activate light sensors before using
them and inactivate them after use.

(light-on int) [Function]

Activates the light sensor at port int, which must be one of 1, 2,
and 3. Returns the int. When activated, the red lamp on the light
sensor will turn on.

(light-off int) [Function]

Inactivates the light sensor at port int, which must be one of 1, 2,
and 3. Returns the int. When inactivated, the red lamp on the light
sensor will turn off.

31

Light sensors return light levels in terms of integers between 0 (black) and
98° (white).

:white [Reader Constant]
:black [Reader Constant]

These reader constants :white and :black represent the maximum
value and the minimum value, respectively, that light sensors return.

(light int) [Function]

Obtains the current light level from the light sensor at port int and
returns the value as an integer. The port number int must be one
of 1, 2, and 3.

13.3 Rotation Sensors

Rotation sensors are active sensors. You have to activate rotation sensors before
using them and inactivate them after use.

(rotation-on int) [Function]

Activates the rotation sensor at port int, which must be one of 1, 2,
and 3. Returns the int. When activated, the current angle position
of the rotation sensor will be used as the origin. The rotation values
obtained later will be measured relative to the origin. The origin
will be reset by another call of rotation-on.

(rotation-off int) [Function]

Inactivates the rotation sensor at port int, which must be one of 1,
2, and 3. Returns the int.

(rotation int) [Function]

Obtains the current rotation value from the rotation sensor at port
int, which must be one of 1, 2, and 3, and returns the value as an
integer. The value is in 360/16 degrees relative to the origin that
has been set when the rotation sensor was activated. The value
may be positive or negative depending on the direction of rotation.
For instance, when the rotation sensor has been turned 270 degrees
after activation, then this function will return 12 (= 270/360 x 16)
or -12. If the sign of the value is not what you expect, then turn
upside down the rotation sensor.

3This value comes from the underlying brickOS. I do not know why it is not 99 or 100.

32

13.4 Temperature Sensors
Temperature sensors are passive sensors. You do not have to activate/inactivate
temperature sensors.

(temperature int) [Function]

Obtains the current temperature from the temperature sensor that
is attached to the port int, which must be one of 1, 2, and 3, and
returns the value as an integer in Celsius. For those who are not
familiar with the Celsius system, 0°C is the freezing point and 100°C
is the boiling point. Our body temperature is about 37°C.

13.5 Touch Sensors

Touch sensors are passive sensors. You do not have to activate/inactivate touch
sensors.

(touched? int) [Function]

Returns #t if the touch sensor at port int (which must be one of 1, 2,
and 3) is touching something. Otherwise, returns #f. For example,
the following expression can be used to wait until the touch sensor
at port 1 touches something.

(wait-until (touched? 1))
Do not confuse this function with pressed?, which is to check if the

Prgm button has been pressed.

13.6 Lamps

Lamps can be attached to effector ports, and controlled by the functions motor
and speed above. To turn on the lamp that is attached to port port, use

(motor port :forward) or (motor port :back).
To turn off, use
(motor port :off) or (motor port :brake).

The speed function can be used to change the brightness of the lamp. The higher
the speed, the brighter the lamp. The maximum brightness is :max-speed.

Note that if a lamp and a motor are attached to the same effector port,
then the lamp will be lit only when the motor is moving and the brightness will
indicate the motor speed.

33

14 Memory Management

Some XS objects are internally represented with cells, which are allocated in the
memory area, called the heap, in the RCX RAM memory. Each cell is a data
structure that is capable of storing two XS objects in it. Thus cells are similar to
cons objects. In fact, each cons object is represented with a cell. However, cells
are used also for representing some other objects, such as user-defined symbols
and user-defined functions.

Cells that are not used for representing objects are called free cells. Initially,
when an XS session is started up, all cells in the heap are free. Each time the
XS system needs cells to represent an object, it finds an appropriate number of
free cells in the heap. Eventually, all available cells will be used up and there is
no free cell in the heap. In order to continue the computation, the XS system
recycles those cells that were once used to represent objects but that are not
in use any more. This process of recycling is called garbage collection. Usually,
garbage collection takes place when there is no more free cell, but the user can
force a garbage collection by using the function gc (see below).

The number of cells allocated in the heap is determined at installation time
of your RCX system. If XS cannot find a free cell after automatic garbage
collection, then XS cannot continue the current computation. In that case,
XS aborts the current computation with an error message “heap full”. Even
then, there remains a chance that the user can continue interacting with the XS
system because some cells may be freed up by aborting the computation.

(go) [Function]

Forces a garbage collection, and returns the number of free cells.

Acknowledgement

This project is sponsored by the Information-technology Promotion Agency
(IPA) as an Exploratory Software Project. I would like to thank Dr. Takashi
Chikayama, the Project Manager, for his valuable advises. I would also like to
thank Dr. Sheng-Chuan Wu who carefully reviewed a draft of this manual and
gave valuable comments to improve it.

34

Index

> 17

06

* 22

+ 21

-22

/ 22

:AO 27
:A8 27
:AmO 27
:Gm8 27
:La0 28
:La8 28
:La#0 28
:So#8 28
:a 30

:b 30
:back 30
:black 32
:brake 30
:c 30
:forward 30
:max-speed 31

:most-negative-integer 5
:most-positive-integer 5

:off 30
:stderr 25
:stdin 25
:stdout 25
:white 32
<21

<=21

=21

> 21

>= 21

#f 4

#t 4
#\newline 8
#\page 8
#\return 8
#\space 8
#\tab 8

35

and 16
append 24
apply 18
assoc 24
battery 30
begin 19
boolean? 15
bye 15

car 23

catch 19

cdr 23

cls 29

cons 23
define 13, 14
eq? 16

fork 14
function? 15
gec 34

if 19
integer? 15

lambda 7, 12, 13, 17

last-value 15
length 23
let 17

let* 17
letrec 18
light 32
light-off 31
light-on 31
linked? 29
list 24
list* 24
list-ref 23
load 14
logand 22
logior 22
logshl 23
logshr 23
logxor 22
member 24
motor 31

not 16

null? 15

or 16

pair? 15

play 27
playing? 27
pressed? 28
putc 29

puts 29

quote 17
random 23

read 25
read-char 25
read-line 25
remainder 22
reset-time 20
reverse 24
rotation 32
rotation-off 32
rotation-on 32
set! 17
set-car! 23
set-cdr! 23
sleep 20

speed 31
symbol? 15
temperature 33
throw 19

time 20
touched? 33
trace 14
trace-call 19
untrace 15
wait-until 20
with-watcher 20
write 25
write-char 26
write-string 26

36

XS Handy Reference

This Reference lists all XS functions
together with their parameter profiles,
and all XS reader constants. We use
the following notations.

X*: zero or more X'’s

X*: one or more X’s
{X1]--+|Xn}: oneof Xy,..., X,
[X]: optional X

Special form names (including top-level
form names) are underlined. Functions
marked with ¢ § * are installation-time
options.

Common Functions

e top-level forms
(define sym form)
(define (sym sym™* [. sym])
form™®)
(load string)
(trace sym)
(untrace sym)
(bye)

e basic forms
(quote obj)
(set! sym form)

(lambda (sym* [. sym]) form*)

e control
(begin form*)
(apply fun obj* list)
(trace-call sym fun list)
(if form form [form])
(catch form form™)
(throw obj obj)

e conditional
(and form*)
(or form™*)
(not obj)

binding

(let [sym]l ((sym form)*) form*)
(let* ((sym form)*) form*)
(letrec ((sym form)*) form*)

type predicates
(boolean? obj)
(integer? obj)
(null? obj)
(pair? obj)
(symbol? obj)
(function? obj)

comparison
(eq? obj obj)
(< intt)

(> intt)

(= int™)

(>= intT)
(<= intT)

arithmetic

(+ int™)

(- int int*)

(x int*)

(/ int int)
(remainder int int)
(logand int int)
(logior int int)
(logxor int int)
(logshl int int)
(logshr int int)
(random int)

list processing

(car cons)

(cdr cons)

(cons obj obj)
(set-car! cons obj)
(set-cdr! comns obj)
(list obj*)

(list* obj* obj)
(Qist-ref list int) T
(append list* obj) t
(assoc obj a-list) |

(member obj list) T
(length list)
(reverse list)

e I/0

(read [int])

(read-char [int])
(read-line [int])

(write obj [int])
(write-char char [int])
(write-string string [int])

garbage collection
(gc)

Lego-specific Functions

top-level forms

(last-value)

(fork sym sym string™)
; Linux version only

control

(sleep int) ;in 1/10 seconds

(wait-until form)

(with-watcher ((form form™*)*)
form™*)

system clock
(time) ; value in 1/10 seconds
(reset-time)

IR communication test
(1inked?)

light sensors
(light-on {1|2|3})
(light-off {1]2|3})
(light {1]2/3})
; value 0 (:black) to 98 (:white)

rotation sensors
(rotation-on {1|2|3})
(rotation-off {1]2|3})
(rotation {1]2|3})

; value in 360/16 degrees

temperature sensors
(temperature {1|2|3})
; value in Celsius

touch sensors
(touched? {1|2|3})

motors
(motor {:a|:b|:c}
{:off|:forward|:back|:brake})
(speed {:a|:b|:c} speed)
;0 < speed < 255 (:max-speed)

sounds

(play ((pitch . length)*))
; see below for pitches

(playing?)

Prgm button
(pressed?)

LCD display
(puts string)
(putc char column)
; 0 < column < 4 (left-most)
(cls)

e battery level

(battery) ; value in 1/10 volts

Other Reader Constants

e standard ports

:stdin, :stdout, :stderr

e pitches

:AO, :AmO, :HO, :C1, :Cml, :D1,

:Dm1, :E1, :F1, :Fm1, :G1, :Gm1,
tA1, ..., :A8
:La0, :La#0, :Si0, :Dol, :Do#1,
:Rel, :Re#1, :Mil, :Fal, :Fa#l,
:S01, :So#1, :Lail, ..., :La8
:pause

e integers

:most-positive-integer
:most-negative-integer

