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ABSTRACT
We present a Lisp system XS which is designed to con-
trol RCX blocks of the Lego MindStorms Robotics Inven-
tion System (RIS). Unlike previous Lisp/Scheme implemen-
tations for the MindStorms, the evaluator of XS runs au-
tonomously on the RCX, with its own runtime stacks and
garbage-collected heap. It communicates with the front-end
subsystem on a PC, to provide an interactive programming
environment with features such as backtrace, function trace,
and terminal interrupt. The evaluator supports a language
based on Lisp/Scheme, extended with functionality for in-
terfacing with RIS devices such as motors and various kinds
of sensors. It also supports mechanisms such as event wait-
ing and asynchronous event handlers for controlling robots
built with RIS.

1. INTRODUCTION
The Lego company, well-known worldwide by their toy blocks,
is supplying a robotics system, called Lego MindStorms Robotics
Invention System (RIS) [6]. The central component of the
system is a programmable block called RCX, with an 8-bit
CPU. By attaching motors, sensors, and other component
blocks, one can build robots that are controlled by user-
supplied RCX programs. Since even children can write sim-
ple programs to control their own robots, the RIS system
is being used for education in programming and mechanical
engineering.

In the programming environment supplied by the Lego com-
pany, RCX programs are described in a simple visual lan-
guage [1]. Because of the simplicity, even small children can
use the language. On the other hand, the visual language
seems not suitable for learning realistic programming, be-
cause it is quite different from ordinary programming lan-
guages and its expressive power is limited. For instance, the
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language does not support parameterized subprograms nor
user-defined variables. A C-like language NQC (Not Quite
C) [2] is available, which is essentially a text-based variation
of the visual language. Because of the limitation of the RCX
firmware [8], the expressive power of NQC is also limited.
For instance, although NQC has the concept of functions,
no user-defined function can be invoked from another user-
defined function.

An open-source operating system brickOS (formerly called
legOS) [3] has been developed for RCX. By replacing the
RCX firmware with brickOS, one can write control programs
in the C language. One difficulty in using this OS, not only
for children but also for expert programmers, is that its
memory area is not protected against user programs and
the OS easily crashes while executing a buggy program. In
addition, because C is a compiler-oriented language, even for
testing a simple functionality, one has to take a tedious pro-
cedure: create a source file, compile the program, download
the binary, and run.

This paper presents a language system XS, which has been
developed for the following objectives.

• Even children or novice programmers can easily use it.

• It can be used for developing advanced programs.

• It provides an interactive programming environment
for efficient program development.

LegoScheme [11] and LegoLisp [5] have been developed for
similar objectives. They support programming in extended
languages in the Lisp family. In these systems, programs
run in the front-end PC and send control instructions to the
RCX. Because the front-end PC and the RCX communicate
via infra-red (IR) signals, the RCX sometimes fails to receive
control instructions, in particular when it is used in a moving
robot. In addition, because the IR communication is slow,
the RCX cannot receive control instructions that respond
to sensor input, within a reasonable period of time. Our
system XS also supports programming in a Lisp language
in order to provide interactive programming environment.
In XS, however, programs are downloaded to the RCX and
are executed by an autonomous evaluator in the RCX. This
solves the above problems in the two Lisp-based language
systems.



In order to provide an interactive and satisfactory program-
ming environment, XS supports the following features.

1. read-eval-print loop

2. interactive definition and re-definition of functions

3. appropriate error messages with backtraces

4. function trace and untrace

5. dynamic object allocation and garbage collection

6. robustness against program errors and stack/buffer over-
flow

7. terminal interrupts

8. truly tail-recursive interpreter

9. event/timer waiting and asynchronous event watchers

10. interface to RIS devices such as motors, sensors, lights,
and sounds

These features other than the last three are commonly found
in ordinary Lisp systems. Feature 8 is found in ordinary
Scheme interpreters and feature 9 or its variation is found
in multi-threaded Lisp systems. Therefore, from the user’s
point of view, XS looks as an ordinary Lisp system with
extensions for controlling RIS devices.

The next section introduces some features of RCX that are
necessary to understand the rest of the paper. Section 3
gives an introduction to the XS system, which is intended to
provide a realistic image of the system. Section 4 presents
the language that XS supports, followed by a simple pro-
gram example in Section 5. Section 6 provides implementa-
tion details for important features of XS. Finally, in Section
7, we report the current status of the project.

2. RCX
The CPU in RCX is a 16 MHz Hitachi H8 Microprocessor
with 16-bit addressing space. Each RCX has 32K (or 16K)
bytes of ROM and 32K bytes of RAM. The contents of the
ROM memory cannot be modified by the user and some
memory locations in the RAM are reserved for use by the
ROM program. The remaining memory area in the RAM is
used for the RCX firmware (or another OS) and user pro-
grams. No secondary storage is available. Since memory
constraint is severe, space is more important than speed in
developing a language system for RCX.

At the front of an RCX block (see Figure 1) is an IR port,
which provides the only communication means with the front-
end PC. The PC uses a Lego-supplied “IR tower” for IR
communication. The IR tower is connected with the PC
through a serial port (RCX models 1.0 and 1.5) or through
a USB port (RCX model 2.0). Since the communication
range of IR is relatively small, the PC and the RCX some-
times fail to receive messages, in particular when the RCX
is embedded in a moving robot.

On the surface of an RCX block are three effector ports
(ports A to C) and three sensor ports (ports 1 to 3). At the

Figure 1: RCX attached with two motors (ports A
and C), two touch sensors (ports 1 and 3), and a
light sensor (port 2).

Figure 2: LCD, four buttons, and port labels.

center of the block is an LCD display (see Figure 2) which
can display up to five characters. Around the LCD display
are four buttons On-Off, Prgm, Run, and View. On-Off is
used to turn on/off the RCX, Prgm for selecting a user pro-
gram stored in the RCX, and Run for starting the selected
program. View is intended for monitoring the running pro-
gram, but this button is rarely used.

The RCX is powered by six AA batteries stored in the bot-
tom of the block. Attached motors and active sensors are
also powered by these batteries. Even after the RCX is
turned off, contents of the RAM memory are maintained.
Thus when the RCX is turned on, previously downloaded
user programs are ready to run.

3. AN OVERVIEW OF XS
The system of XS consists of the front-end subsystem on
PC and the subsystem on RCX. These subsystems cooper-
ate with each other to provide an interactive programming
environment which looks like an ordinary Lisp system.

Figure 3 illustrates a sample session with XS. When the
front-end subsystem is invoked (line 1), it displays a prompt
“>” and starts interaction with the user. Following the
prompt, the user inputs a function definition (line 4) and
tests it (line 7). Since the function definition refers an un-
defined variable nil, an error message is printed out (line 8)
followed by a backtrace (line 9). Then the user defines the
variable nil with the empty list as its value (line 10), and
tests the function again (line 12). This time the function re-
turns a correct answer (line 13) and the satisfied user ends
the XS session (line 15). The user sees nothing special with
this sample session. Internally, however, things are quite



1 % xs
2 Welcome to XS: Lisp on Lego MindStorms
3
4 >(define (ints n)
5 (if (= n 0) nil (cons n (ints (- n 1)))))
6 ints
7 >(ints 3)
8 Error: undefined variable -- nil
9 Backtrace: ints > ints > ints

10 >(define nil ())
11 nil
12 >(ints 3)
13 (3 2 1)
14 >(bye)
15 sayonara
16 %

Figure 3: A sample XS session (line numbers are
added for explanation).

different from ordinary Lisp systems, because the evaluator
is located in an RCX.

When the front-end subsystem is invoked, it first checks
whether the RCX subsystem is ready. If not ready (e.g., the
user forgot to turn-on the RCX), then the front-end gives
up interaction with the user.

% xs
RCX is not responding.
Make sure RCX is running, and try again.
%

When an S-expression is input from the PC keyboard, the
front-end preprocesses the S-expression and sends the result
to the RCX subsystem. The evaluator then evaluates the
S-expression and sends back the value, which is displayed
on the PC display. In case of a function definition, the
evaluator installs the definition and returns the symbol that
names the function.

The user can interrupt a running program by pressing Control-
C. In the following example of interaction, the user pressed
Control-C while the let expression is executing an infinite
loop.

>(let loop () (loop))
Error: terminal interrupt
Backtrace: let > #<function>
>

A request for terminal interrupt from the front-end is passed
to the RCX through IR communication. If the RCX is out of
the IR range, it fails to receive an interrupt request. For such
a case, XS provides another means for terminal interrupt:
pressing the View button. If the RCX is within the IR range,
terminal interrupt by the View button behaves in exactly the
same way as in the case of terminal interrupt by Control-C.
Otherwise, the front-end keeps waiting for a return value
from the RCX, because there is no way for the front-end to

recognize the interrupt caused by the View button. In this
case, the user should move the RCX into the IR range after
interrupting the program, and then press Control-C.

4. THE LANGUAGE
As will be clear from the sample session in the previous
section, the language of XS is based on Scheme [4] rather
than Common Lisp [9]. This is because Scheme allows more
compact implementation for the following reasons.

• Since functions and variables share a single name space
in Scheme, a symbol object needs to have only one slot
to store its value.

• Since loops are realized by tail-recursive calls in Scheme,
we do not need separate loop constructs. This reduces
the code size of the evaluator.

4.1 Data types
The language of XS supports the following data objects.

• 14-bit signed integers

• conses (or pairs)

• functions

– built-in functions

– lambda closures (user-defined functions)

• symbols

– predefined symbols for built-in functions

– user-defined symbols

• miscellaneous

– the empty list

– truth values #f and #t

Among these, conses, lambda-closures, and user-defined sym-
bols are represented as pointers to heap-allocated cells, whereas
the others are represented as immediate data. Because of
this design, the heap of the RCX subsystem starts with no
cells allocated in it. We will discuss more details of data
representation in a later section.

It is a pity that integers are 14-bit long. The largest positive
integer is 8,191 (= 213 − 1). This is because a word in
RCX is 16-bit long and XS uses two bits as an object tag.
Besides, the small memory size of RCX requires integers
be immediate data. Heap-allocated integers would consume
the heap space and operations on them would make the
evaluator much larger.

In addition to the above data objects, XS defines pseudo
data objects to facilitate program coding. Each such object
is converted to an actual data object by the front-end reader.

• characters, converted to ASCII code integers.
ex. #\a ⇒ 97



• strings, converted to lists of ASCII code integers.
ex. "abc" ⇒ (97 98 99)

• reader constants, used to specify integers whose actual
values are not important. Names of reader constants
begin with a colon “:”. Some of the reader constants
are:

:a (used to specify the effector port A)
:forward (used to move forward a motor)
:white (the brightest value for light sensors)
:La0 (the lowest pitch of the RCX sound system)

4.2 Built-in functions
The Appendix lists all functions (top-level forms, special
forms, and ordinary functions) that XS supports. These
functions are classified into two categories: those supported
commonly by many conventional Lisp/Scheme systems (listed
in Appendix A.1) and those specific to Lego MindStorms
(listed in Appendix A.2).

Most of the common functions behave as specified in IEEE
Scheme [4]. Only a few comment would suffice for under-
standing the set of common functions. XS does not sup-
port first-class continuations of Scheme. Instead, it sup-
ports catch and throw of Common Lisp for dynamic non-
local exit. The function gc forces garbage collection and
returns the number of free cells. The function write in XS
corresponds to display in Scheme. Since strings in XS are
actually lists of integers, the function write cannot display
strings appropriately as intended by the user. The function
write-string is added to solve this problem.

The Lego-specific top-level forms last-value and ping cover
the unreliable IR communication. last-value literally re-
turns the value of the last S-expression. This form is used
when the front-end failed to receive the last value. ping is
used to see if the RCX is alive and within the IR range. It
immediately returns a certain value if the RCX is ready.

The function sleep suspends execution of the current pro-
gram for a specified period of time. The time to suspend is
given in 1/10 seconds. Although RCX can be controlled in
the order of milliseconds, it seems that 1/10 second is short
enough and the maximum suspension time of 13 minutes
(≈ (213 − 1) ÷ 10 ÷ 60) is long enough to control XS ap-
plications. For the same reason, the time function returns
the “current time” in 1/10 seconds. The system clock of
XS is initialized to zero when the RCX subsystem is started
up. Because of the short length of XS integers, the value
of time overflows in about 13 minutes. Therefore, when the
user wants to measure a time span, it is recommended to
reset the system clock with the function reset-time, before
obtaining the starting time.

The special form (wait-until expr) waits until the event
specified by expr happens. expr may be any expression,
which is periodically evaluated until it returns true. For
example,

(wait-until (pressed?))

waits until the Prgm button on the RCX brick is pressed
(see below for the predicate pressed?).

The special form with-watcher provides another means for
event waiting. Its general form is:

(with-watcher ((event1 . handler1)
· · ·
(eventn . handlern))

. body)

During execution of the body, the evaluator periodically checks
the specified events. If some event i evaluates to true, then
execution of the body will be suspended and the correspond-
ing handler i will be executed. Even during the execution of
handler i, the evaluator keeps checking event i+1 to eventn

and if some event j (j > i) evaluates to true, then the
evaluator will suspend the running handler i and executes
handler j . When execution of handler j is finished, the sus-
pended execution of handler i will be resumed. That is,
with-watcher allows nested execution of the handlers with
the priority of the events in the reverse order they appear
in the with-watcher form.

XS supports four kinds of sensors: light sensors, rotation
sensors, temperature sensors, and touch sensors. Among
these, light sensors and rotation sensors are active sensors.
They must be turned on with light-on or rotation-on be-
fore use and are recommended to be turned off with light-off
or rotation-off after use. The sensor values are obtained
by light, rotation, temperature, and touched?. The ar-
guments to these functions specify the sensor ports to which
the sensors are connected.

The function motor sets up the direction of the motor that
is connected to the specified effector port. The motor speed
is set up by the function speed. These functions return the
second argument so that multiple motors can be controlled
with nested calls such as

(speed :a (speed :c :max-speed))
(motor :a (motor :c :forward))

The function play initiates playing a tune as specified by
an association list of pitches and lengths. Pitches are in-
tegers but are usually expressed by reader constants :La0,
:La#0, :Si0, :Do1, . . ., :So8, :So#8, :La8, and :pause. The
predicate playing? is used to check if the RCX has finished
playing the tune. The predicate pressed? returns true if the
Prgm button is being pressed, and returns false otherwise.

The function puts displays the given string (up to the first
five characters) on the LCD display. putc displays the given
character at the specified position on the LCD display and
cls clears the entire LCD display. Finally, battery is used
to check the battery level of the RCX.

5. A PROGRAM EXAMPLE
Figure 4 gives a simple program that controls a “land rover”
which can bypass obstacles. Initially, the rover moves for-
ward playing a tune. When the rover hits an obstacle, it
backs up, turns right or left randomly, and then moves for-
ward again. The rover repeats this action until the Prgm



(define (forward)
(motor :a (motor :c :forward))
(play ’((:Re4 . 2) (:Do4 . 1) ...)))

(begin
(speed :a (speed :c :max-speed))
(forward)
(with-watcher
(((touched? 2)

(motor :a (motor :c :back))
(sleep 5)
(motor (if (= (random 2) 0) :a :c)

:forward)
(sleep 5)
(forward)))

(wait-until (pressed?))
(motor :a (motor :c :off))
))

Figure 4: A sample program: Land Rover.

button is pressed. The function forward defines the ac-
tion to go forward. It directs the motors to move forward,
initiates playing the tune, and returns. The begin expres-
sion gives the main action of the rover. It sets the speed of
the motors, invokes forward, waits until the Prgm button
is pressed, and then stops the motors. While waiting, each
time the touch sensor hits something, the program moves
back the motors for half a second, moves either motor (cho-
sen randomly) forward for half a second while keeping the
other motor moving backward, and moves the rover forward
again.

6. IMPLEMENTATION
The XS system is built on top of a tiny operating system
legOS [10], which is now called brickOS [3]. The version
of legOS we are using is 0.2.4. legOS provides a kernel
that replaces the Lego-supplied firmware, and a set of utility
programs to download the kernel and user programs. The
utility programs use the Lego Network Protocol (LNP) for
IR communication. The LNP protocol does not guarantee
message arrival but does guarantee the validity of a message
if it arrives at the destination. User programs are written
in C, which are then compiled by the GNU cross compiler
for the H8 Microprocessors and downloaded by a utility pro-
gram. Although the GNU cross compiler accepts a full set
C language, run-time libraries are limited to those that are
supplied by legOS. legOS itself is written mostly in C and
partly in an assembly language.

The XS system is entirely written in C. The RCX subsystem
is regarded as a user program for legOS. Thus it is compiled
by the GNU cross compiler and downloaded by a utility pro-
gram of legOS. The front-end subsystem is compiled by an
ordinary C compiler available on each PC. These subsystems
communicate with each other with the LNP protocol.

The front-end subsystem includes a reader that reads S-
expressions and a printer that displays S-expressions. These
components are similar to those in conventional Lisp sys-
tems. Each S-expression is preprocessed in the front-end

before passed to the evaluator in the RCX. The preproces-
sor does many things. Indeed, it performs whatever it can do
to reduce the load of the evaluator, such as syntax checking
of special forms and some optimizations. We will mention
more about the work of the preprocessor later in this section.

The RCX subsystem is essentially a “receive-eval-return”
loop. It waits for an S-expression at the beginning of each
iteration. When an S-expression arrives, it will be evaluated
by the evaluator, and the value will be sent back to the
front-end. The RCX subsystem repeats this process until it
receives a command to stop, which is sent by the front-end
when the user inputs “(bye)”.

The evaluator is a truly tail-recursive interpreter for pre-
processed S-expressions. The evaluator itself is defined as a
recursive function in C but nevertheless it does not require
the so-called “trampoline” mechanism to be tail-recursive.
Details of the evaluator are beyond the scope of this paper
and are left to another paper. Tail-recursive interpreter is
mandatory for systems like XS that runs on a small mem-
ory space. It saves the heap space as well as the stack space,
because unnecessary function frames do not remain in the
stack.

The legOS kernel occupies about half of the RAM memory.
XS uses the remaining half as follows.

• code of RCX subsystem: 11K bytes1

• I/O buffer: 256 bytes

• C stack: 1K bytes, i.e., 512 words

• value stack: 0.5K bytes, i.e., 256 words

• heap: 3K bytes for 768 cells

• bit table: 96 bytes for 768 bits

The C stack is used implicitly for executing the RCX sub-
system. The RCX subsystem never accesses the C stack
directly. The value stack is used to pass arguments to XS
functions, to allocate local variables, and to protect objects
from being garbage collected.

The heap is used to construct dynamic data structures. Only
a single kind of cells can be allocated in the heap to allow
efficient use of the small heap space. Every cell occupies
two words (i.e., four bytes) and is aligned to a double-word
boundary. Complex data structures are constructed by com-
bining several cells. All unused cells are linked together to
form a free-list. When a new cell is requested by the user
program, one cell will be removed from the free-list and re-
turned. If the free-list is empty, the user program will be
suspended and a garbage collection will take place. The
garbage collection uses a simple mark and sweep algorithm,
which is very efficient for systems with a single kind of cells
and no support for virtual memory. We use a separate ta-
ble, the bit table, to remember the set of non-garbage cells.

1We have not measured the precise size of the on-memory
RCX subsystem. The above number is actually the size of
the binary file.
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Each bit in the bit table corresponds to a cell and the total
size of the table is only 96 bytes for the current configura-
tion with 3K bytes of heap. It may be expected to have a
real-time or incremental garbage collection in order to con-
trol robots. However, because of the small heap size and
the relatively fast CPU of RCX, we have never experienced
a trouble caused by the stop-the-world garbage collection.

6.1 Object representation
Figure 5 illustrates how objects are represented in XS. Every
object is represented by a 16-bit word and the two least
significant bits (LSBs) are used as tags to distinguish data
types. The most significant bit (MSB) of an object other
than integers is also used as a tag. The MSB tag is 1 for
heap-allocated objects and is 0 for immediate data. The
LSB tag values are arranged so that all functions have the
same tag 01 and all symbols have the same tag 10.

The RAM memory of RCX is placed in the higher part of
the 16-bit address space and thus the MSB of a cell address
is always 1. Since cells are aligned to double-word bound-
aries, the LSBs of a cell address is always 00. Thus the
representation of a cons object is nothing more than the
raw pointer to a cell. (“cell address” in the Figure means
a cell address without the MSB and the two LSBs.) This
simplifies operations for list processing. For instance, the
function car regards its argument as a cell pointer and will
simply return the object that is pointed to by the pointer
(see Figure 6 (a)). In contrast, for lambda closures and user-
defined symbols, the pointer to a cell is obtained by clearing
the two LSBs.

The representation of a built-in function contains an id and
an arg info. The id is a number that uniquely identifies the
function. The 6-bit arg info consists of the number of re-
quired arguments (2 bits), the maximum number of accept-
able arguments (3 bits), and a flag indicating whether the
function can accept arbitrarily large number of arguments (1

(a) cons

(b) lambda closure

(c) user-defined symbol

car cdr

valueoblink

bodyarg infoenv

Figure 6: Interpretation of cells.

bit). When the evaluator invokes a built-in function, it first
checks the number of arguments according to the arg info,
and then jumps to the implementation code of the function
by dispatching according to the id.

Each predefined symbol has an associated built-in function
as the value of the symbol. As in Scheme, there is no pre-
defined symbol whose symbol value is undefined or whose
value is an object that is not a built-in functions. In ad-
dition, predefined symbols in XS are immutable, i.e., as-
signment is not allowed for the global variables named by
predefined symbols. Because of the one-to-one correspon-
dence between predefined symbols and built-in functions, a
predefined symbol has the same representation as the asso-
ciated built-in function except for the LSB tag. The value of
a predefined symbol can be obtained simply by converting
the LSB tag from 10 to 01.

6.2 Symbols
A user-defined symbol is represented by a cell pointer with
the LSBs tagged with 10. The pointed cell is interpreted as
illustrated in Figure 6 (c). The oblink field is used to link to-
gether all user-defined symbols in order to protect them from
garbage collection. In the current implementation, a user-
defined symbol once created will never be garbage-collected.
The value field contains the symbol value, i.e., the value of
the global variable that is named by the symbol. If the value
is not defined, the value field contains an “undefined object”,
which is represented as a miscellaneous object. Since a sym-
bol object is tagged with 10 in its LSBs, it can be regarded
as a pointer to the second field of the cell. Thus it can be
used, without modification, to access the value field.

Symbol names are maintained in the front-end. The front-
end has a hash table, called symbol table, for mapping
symbol names to symbol objects (both predefined and user-
defined). When the reader of the front-end encounters a
symbol token, it looks up the symbol table to convert the
token into a symbol object. If no symbol is registered under
the symbol name, the reader sends a request to the RCX
subsystem to create a new symbol object. The RCX sub-
system allocates a new cell, links it to the oblink, initializes
the value field with the undefined object, and sends back
the symbol object. The reader then registers the symbol
object into the symbol table. This process of “interning”
is not necessary for symbol tokens that are used only for
local variables, because references to local variables are con-
verted to references to locations in the value stack by the



preprocessor of the front-end (see below).

In order to print out a symbol, the front-end has a hash table
that maps user-defined symbols to symbol names. Names of
predefined symbols are stored in another table indexed with
function ids.

6.3 Lambda closures
The front-end preprocessor converts a lambda expression

(lambda parameters . original-body)

into

(lambda arg-info . body)

where arg-info is similar to that stored in build-in function
objects and body is the result of preprocessing original-body.
When the evaluator creates a new closure for the lambda
expression, it simply replaces the first cell with a new cell,
and stores the lexical environment in the car part of the new
cell (see Figure 6 (b)). The rest of the lambda expression can
be shared by all closures made from the lambda expression.
Therefore, creation of a new closure consumes only one cell,
though construction of the lexical environment may consume
some more cells as explained below.

Local variables (including parameters) are allocated on the
value stack. The preprocessor replaces local variable refer-
ences with references to value stack locations relative to the
base address of a function frame. When the evaluator in-
vokes a lambda closure, it first pushes the lambda closure
onto the value stack and then pushes the arguments. Then
the evaluator starts executing the body. The other local
variables (those that are specified by binding forms such as
let) will be also allocated in the value stack. When a bind-
ing form is evaluated, the initial values of the local variables
are pushed onto the stack. They are popped off the stack
when the binding form is exited. Local variables are refer-
enced by their offsets from the base address of the function
frame. At the base address is the lambda closure and the
i-th parameter is at the word offset i.

Lexical environments are constructed by linking heap cells.
When a lambda closure is invoked, the initial lexical environ-
ment is the one stored in the closure. When a local variable
is to be allocated on the stack, if it may be enclosed in some
closures, it will be “lifted” into the heap. That is, a new
cell is allocated and the car part of the cell is used to store
the value of the local variable. The initial value of the local
variable is moved to the car part of the cell and a pointer
to the cell is stored at the stack location of the variable for
quick reference. The cdr part of the cell is linked to the
lexical environment at that time.

The preprocessor of the front-end performs all static analy-
sis necessary to implement the above scheme, and passes ap-
propriate information to the RCX evaluator by embedding
in S-expressions. First, the preprocessor inserts lifting com-
mands at appropriate places in S-expressions. The operands
of a lifting command are the location of the variable to lift

and the location of the lexical environment at the time of
lifting. Second, the preprocessor replaces each reference to
a local variable with one of the three commands: to refer-
ence a stack location, to reference the car part of the cell
that is pointed to from a stack location, and to reference an
element in the list that is stored in the closure as the lex-
ical environment. The operand of the first two commands
is a stack location and the operand of the last command is
an index to the list. Third, the preprocessor embeds the
location of the lexical environment to be saved in lambda
closures, in the symbol lambda of each lambda expression.
Since all static information is prepared by the preprocessor,
only simple operations are left to be done at run time by
the evaluator,

6.4 Communication
The front-end sends each (preprocessed) S-expression to the
RCX, as a byte sequence. The receiver in RCX restores
the S-expression from the byte sequence, by using cons cells
in the RCX heap. XS uses post-fix notations for byte se-
quences. For instance, the list “(1 2)” will be transmitted
as the following sequence of five bytes.

low(1), high(1), low(2), high(2), list2

where low(x) and high(x) are the lower byte and higher
byte, respectively, of the object representation of x. list2
is a command to construct a list with the preceding two
objects. By looking at the first byte, the receiver recognizes
it is the lower byte of an integer because its LSB tag is
11. So, the receiver assumes the second byte is the higher
byte of an integer, restores the integer 1, and pushes it onto
the value stack. Similarly, the receiver restores the integer 2
from the third and fourth bytes and pushes it onto the stack.
Since the fifth byte is the command list2, the receiver pops
out two objects from the stack, constructs a list with these
objects, and then pushes the list onto the stack for further
processing.

Commands in byte sequences are represented as miscella-
neous objects (recall Figure 5). The higher bytes of mis-
cellaneous objects are not used except for the MSB, which
is used to distinguish from cons objects. Cons objects are
never sent in byte sequences, because they are to be created
by the receiver. Thus, by sending only the lower byte, the
receiver can recognize it is a miscellaneous object. Depend-
ing on the id, the object may be an ordinary object such
as the empty list and the boolean values, or it may be a
command.

Some commands direct the receiver to invoke the evaluator.
For example, the definition “(define bar (foo 1))” will
be passed as the following 9-byte sequence.

low(foo), high(foo), low(1), high(1), list2, eval,
low(bar), high(bar), define

where low(foo) is the lower byte of the symbol object for the
symbol foo (remember that symbols are interned in advance
by the front-end reader). The receiver first constructs a list
“(foo 1)” from the first five bytes and pushes it onto the



stack. By the eval command, the receiver pops out the list,
invokes the evaluator to evaluate the list as an S-expression,
and then pushes the result onto the stack. The receiver
then pushes the symbol object for bar. By the command
define, the receiver pops out the variable symbol and then
the initial value, and defines the variable.

Since the capacity of the I/O buffer in RCX is limited (256
bytes in the current configuration), a complex S-expression
may not be sent at once. If this is the case, the S-expression
will be sent in multiple byte sequences, one sequence at a
time. Each such sequence ends with a special command
cont which indicates more sequences follow.

The RCX subsystem returns values to the front-end in a
similar way. The only difference is that returned values may
contain cycles, in which case simple encoding would cause
infinite communication. To avoid this situation, the RCX
subsystem stops transmitting a value after sufficiently large
number of bytes have been transmitted. The upper limit is
computed from the total number of cells in the heap.

7. CURRENT STATUS
We have finished the preliminary implementation of XS. The
front-end subsystem of XS is running on Linux (Redhat and
Debian) and Cygwin platforms. The RCX subsystem is run-
ning on RCX models 1.0 and 1.5. Some students at Kyoto
University have been using XS for studying Lisp/Scheme
while enjoying robot construction. Their comments have
been reflected to the design of XS. For instance, the time
function and the with-watcher construct were added in re-
sponse to their requests.

One known problem of XS is that user programs are not
maintained in the RAM after XS is exited. RCX has the
ability to maintain user programs in the RAM even after the
power is turned off. In the case of XS, the RCX subsystem is
a user program for RCX, and is maintained after power off.
The user need not download the RCX subsystem each time
he turns on the RCX. However, for RCX, user programs of
XS are data and RCX does not maintain them. Thus the
user has to download his XS program each time he turns-on
the RCX. This means he always has to carry a PC to run
his program. This problem seems hard to solve. With the
current configuration of the XS system, the only possible
solution would be to modify the operating system.

We would like to have the XS system run on Windows plat-
forms and support RCX model 2.0. Unfortunately, legOS
version 0.2.4, on which the current implementation is based,
does not support the LNP protocol for Windows and for
USB communication. Although the latest version of legOS
supports USB communication on Windows platforms, it oc-
cupies much more RAM space than version 0.2.4. The lat-
est version may be small enough for small applications, but
seems too large to run the RCX subsystem of XS. We are
trying to solve this problem by removing those components
that are not necessary to run XS.

The XS system is not yet publicly available. We plan to
distribute it as an open-source software.
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APPENDIX
A. LIST OF XS FUNCTIONS
This appendix gives a list of all functions that XS supports,
together with their parameter profiles. We use the following
notations.

X*: zero or more X’s
X+: one or more X’s
{X1|· · · |Xn}: one of X1, . . . , Xn

[X]: optional X

When the parameter profiles of functions X1, X2, . . . , Xn

are the same except for their function names, we sometimes
write the profile of X1, followed by the names of X2, . . . , Xn.
For instance, the profile of or is (or expr*).

A.1 Common functions
• top-level forms
(define sym expr)
(define (sym sym* [. sym]) expr*)
(load file-name)
(trace function-name) and untrace
(bye)



• basic forms
(quote object)
(set! sym expr)
(lambda (sym* [. sym]) expr*)

• control
(begin expr*)
(apply function object* list)
(if expr expr [expr])
(catch expr expr*)
(throw object object)

• conditional
(and expr*) and or
(not object)

• binding
(let [sym] ((sym expr)*) expr*)
(let* ((sym expr)*) expr*) and letrec

• type predicates
(boolean? object) and integer?, null?, pair?, symbol?,
function?

• comparison
(eq? object object)
(< int+) and >, =, >=, <=

• arithmetic
(+ int*)
(- int int*)
(* int*)
(/ int int) and remainder
(logand int int) and logior, logxor, logshl, logshr
(random int)

• list processing
(car pair) and cdr
(cons object object)
(set-car! pair object) and set-cdr!
(list object*)
(list* object* object)
(list-ref list int)
(append [list* object])
(assoc object a-list)
(member object list)
(length list) and reverse

• I/O
(read) and read-char, read-line
(write object)
(write-char char)
(write-string string)

• garbage collection
(gc)

A.2 Lego-specific functions
• top-level forms
(last-value)
(ping)

• control
(sleep int) ; in 1/10 seconds
(time) ; in 1/10 seconds
(reset-time) (wait-until expr)
(with-watcher ((expr expr*)*) expr*)

• light sensors
(light-on {1|2|3}) and light-off
(light {1|2|3}) ; 0 (black) to 98 (white)

• rotation sensors
(rotation-on {1|2|3}) and rotation-off
(rotation {1|2|3}) ; in 360/16 degrees

• temperature sensors
(temperature {1|2|3}) ; in Celsius

• touch sensors
(touched? {1|2|3})

• motors
(motor {:a|:b|:c}

{:off|:forward|:back|:brake})
(speed {:a|:b|:c} speed) ; 0 to 255

• sounds
(play ((pitch . length)* ))
(playing?)

• Prgm button
(pressed?)

• LCD display
(puts string)
(putc char column)
(cls)

• battery level
(battery) ; in 1/10 volts


