
XS: Lisp on Lego™ Mindstorms

Taiichi Yuasa
Kyoto University

© Copyright 2003 by Taiichi Yuasa

Hardware organization of Mindstorms

(

PC

serial or USB

IR tower

((((

RCX 1.0, 1.5, or 2.0 attached
with Lego devices and bricks

IR
 (((

16 MHz Hitachi H8 MPU with 16-bit
addressing space
32 KB ROM and 32 KB RAM
LCD display & 4 buttons
3 effector ports & 3 sensor ports
powered by 6 AA batteries

Features of XS
Interactive program development

read-eval-print loop
interactive definition and re-definition of functions
appropriate error message with backtrace
trace and untrace functions

Autonomous evaluator in RCX
dynamic object allocation and garbage collection
truly tail-recursive interpreter
robust against program errors and stack / buffer overflow
terminal interrupts

Sufficient functionality to control robots
Scheme-like language with no first-class continuations
interface to Lego devices such as motors, sensors, lamps, sounds, ...
event / timer waiting and asynchronous event watchers

System overview of XS

(
((((

Linux or Windows

serial or USB IR

LegOS

evaluator

printer

preprocessor

reader

LNP

IR tower

RCX
 (((

S expr

Data types
booleans: #f, #t
integers: 14-bit signed
empty list: ()
conses
functions

built-in functions
lambda closures (user-defined functions)

symbols
built-in symbols (names of built-in functions)
user-defined symbols

Pseudo data types & reader constants
Converted by the Reader

string ⇒ list of character code
ex. “abc” ⇒ (97 98 99)

character ⇒ ASCII code
ex. #¥a ⇒ 97

reader constants ⇒ integer
:most-positive-integer, :most-negative-integer
:a, :b, :c, :off, :forward, :back, :brake, :max-speed,
:white, :black,
:A0, :Am0, ..., Gm8, A8, La0, :La#0, ..., :So#8, :La8, :pause

Common functions
top-level

(define sym expr)
(define (sym sym* [. sym]) expr*)
(load string) ; load from the named file
(trace sym)
(untrace sym)
(bye) ; sayonara

basic
(quote object)
(set! sym expr)
(lambda (sym* [. sym]) expr*)

Common functions (cont.)
control

(begin expr*)
(if expr expr [expr])
(apply function object* list)
(catch expr expr*)
(throw object object)

condition
(and expr*)
(or expr*)
(not object)

binding
(let [sym] ((sym expr)*) expr*)
(let* ((sym expr)*) expr*)
(letrec ((sym expr)*) expr*)

Common functions (cont.)
type predicates

(boolean? object)
(integer? object)
(null? object)
(pair? object)
(symbol? object)
(function? object)

comparison
(eq? object object)
(< int+)
(> int+)
(= int+)
(>= int+)
(<= int+)

arithmetic
(+ int*)
(- int int*)
(* int*)
(/ int int)
(remainder int int)
(logand int int)
(logior int int)
(logxor int int)
(logshl int int)
(logshr int int)
(random int)

Common functions (cont.)
list processing

(car pair)
(cdr pair)
(cons object object)
(set-car! pair object)
(set-cdr! pair object)
(list object*)
(list* object* object)
(list-ref list int)
(append [list* object])
(assoc object a-list)
(member object list)
(length list)
(reverse list)

I/O from/to front-end PC
(read)
(read-char)
(read-line)
(write object)
(write-char char)
(write-string string)

garbage collection
(gc) ; returns # of free cells

Lego-specific functions
top-level

(last-value) ; say that again?
(ping) ; are you alive?

control
(sleep int) ; in 1/10 seconds
(wait-until cond)
(with-watcher ((cond . handler)*) . body)

; asynchronous event watchers
system clock

(time) ; in 1/10 seconds (overflows in 13 min)
(reset-time)

Lego-specific functions (cont.)
light sensors

(light-on {1|2|3})
(light-off {1|2|3})
(light {1|2|3})

rotation sensors
(rotation-on {1|2|3})
(rotation-off {1|2|3})
(rotation {1|2|3})

temperature sensors
(temperature {1|2|3})

touch sensors
(touched? {1|2|3})

Lego-specific functions (cont.)
motors

(motor {:a|:b|:c} {:off|:forward|:back|:brake})
(speed {:a|:b|:c} int)

sounds
(play ((pitch . length)*))
(playing?)

Prgm button
(pressed?)

LCD display
(puts string)
(putc char int)
(cls)

battery level
(battery)

The Evaluator
written entirely in C
compiled by GNU cross compiler
sizes

LegOS: 14 KB
binary: 11 KB (including all built-in functions)
I/O buffer: 256 bytes
C stack: 512 words (= 1 KB)
variable stack: 256 words (= 0.5 KB)
heap: 768 cells (= 3 KB)

Object representation
cons

misc (#t, #f, ())

lambda closure

built-in function

user-defined symbol

built-in symbol

integer

not used 000 id

001

101

100 id arg-info

011

010 id arg-info

1114-bit signed int

car cdr

valueoblink

arg-info bodyenv

heap

Heap management
every cell occupies two words (= 4 bytes)
no need for compaction
free cells are linked together to form a free-list
mark & sweep, stop-the-world garbage collection

heap
free-list

Current status of XS project
Linux version for RCX 1.0 & 1.5 (serial) completed
Windows version and support for RCX 2.0 (USB) almost finished
by Franz Inc. (many thanks to John Foderaro)
draft reference manual ready
will soon start Web distribution as an open source
will be linked from http://www.yuasa.kuis.kyoto-u.ac.jp/~yuasa
and maybe from http://www.franz.com/

((()))

※ The project of XS is sponsored by the Information-technology Agency (IPA) of
Japan as an Exploratory Software Project

show time

Using XS: Preparation
Install GNU cross compiler for Hitachi H8 CPU, available at:

http://legos.sourceforge.net/files/linux/
Download legOS version 0.2.4 from:

http://legOS.sourceforge.net/files/common/
and “make” it.

Connect the IR tower to your PC and turn on your RCX.
Download legOS:

% util/firmdl3 boot/legOS.srec
Download the XS evaluator:

% util/dll xs/eval.lx
You may now turn off the RCX, since both legOS and the XS
evaluator are kept in the RAM as long as the batteries are alive.

http://legos.sourceforge.net/files/linux/
http://legos.sourceforge.net/files/linux/
http://legos.sourceforge.net/files/common/

Using XS: Starting up
Turn on your RCX and press the Run button.
Start the XS front end:

% xs/xs
Welcome to XS: Lisp on Lego Mindstorms

>
Following the prompt ‘>’, enter a top-level form:

>(cons 1 2)
(1 . 2)
>

To end the XS session, type (bye) or press Control-D:
>(bye)
sayonara
%

Turn off your RCX.

Using XS: Error messages
When an error is detected, you will see an error message,
occasionally followed by a backtrace:

>(define (ints n) (if (= n 0) nil (cons n (ints (- n 1)))))
ints
>(ints 3)
Error: undefined variable -- nil
Backtrace: ints > ints > ints
>

Even then, the system is still alive. You may fix the bug online.
>(define nil ())
nil
>(ints 3)
(3 2 1)
>

Using XS: Trace and Untrace
To see how some functions
are invoked, use trace:

To cancel the tracing, use
untrace:

>(trace ints)
ints
>(ints 3)
0>(ints 3)

1>(ints 2)
2>(ints 1)

3>(ints 0)
3<(ints ())

2<(ints (1))
1<(ints (2 1))

0<(ints (3 2 1))
(3 2 1)
>

>(untrace ints)
ints
>(ints 3)
(3 2 1)

Using XS: Terminal interrupt
If your program enters into an infinite loop, press Control-C to abort
the current evaluation:

>(let loop () (loop))
---- you press Control-C here ----
Error: terminal interrupt
Backtrace: let > #<function>
>

You may also press the View button of your RCX to abort the
evaluation:

>(let loop () (loop))
---- you press the View button here ----
Error: terminal interrupt
Backtrace: let > #<function>
>

Programming XS: Tail recursion
Because of the small size of RCX memory, nested function calls
sometimes cause stack overflow:

>(define (ints n) (if (= n 0) () (cons n (ints (- n 1)))))
ints
>(ints 20)
Error: RCX C stack overflow -- 2
Backtrace: ints > ints > ints > ints > ints > ints > ints > ints > ints > ints > ints >
ints > ints > ints > ints > ints > ints

Tail recursion is a programming technique, effective to avoid stack
overflow:

>(define (ints n x) (if (= n 0) x (ints (- n 1) (cons n x))))
ints
>(ints 20 ())
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Programming XS: Loops
You may have noticed XS has no loop constructs such
as while, for, do-while in C.
This is because you can easily realize loop constructs
by using tail recursion

while loop:
(let loop () (if condition (begin body (loop))))
do-while loop:
(let loop () body (if condition (loop)))

Programming XS: Event watchers
a watcher is an asynchronous event-driven handler
watchers are established by with-watcher

(with-watcher ((event1 . handler1) ... (eventn . handlern))
. body)

watcher1 ... watchern are activated in this order and remain
active during execution of body
new watcher is given a priority higher than any active watcher
only the watcher with the highest priority whose event
evaluates to true is triggered at a time
when a handler is running, only watchers with higher priority
may be triggered
when a watcher is triggered, the currently running handler is
suspended during execution of the handler of the triggered
watcher
no watcher is triggered while events are being evaluated

Sample program: Land Rover

video

Sample program: Land Rover
(begin

(speed :a (speed :c (speed :b :max-speed)))
(let loop ()

(motor :a (motor :c :forward))
(motor :b :off)
(play '((:Re4 . 2) (:Do4 . 1) (:Re4 . 1) (:Fa4 . 1) (:Re4 . 1) (:Re4 . 2) (:Fa4 . 2)

(:So4 . 1) (:Do5 . 1) (:La4 . 2) (:Re4 . 2)))
(wait-until (or (touched? 2) (pressed?)))
(if (pressed?)

(motor :a (motor :c :off))
(begin

(motor :a (motor :c (motor :b :back)))
(sleep 5)
(motor (if (= (random 2) 0) :a :c) :forward)
(sleep 5)
(loop))

)))

light b

motor a motor c

sensor 2

light clight a

Sample program: Land Rover II
(define (forward)

(motor :a (motor :c :forward))
(motor :b :off)
(play '((:Re4 . 2) (:Do4 . 1) (:Re4 . 1) (:Fa4 . 1) (:Re4 . 1) (:Re4 . 2) (:Fa4 . 2)

(:So4 . 1) (:Do5 . 1) (:La4 . 2) (:Re4 . 2))))

(begin
(speed :a (speed :c (speed :b :max-speed)))
(forward)
(with-watcher (((touched? 2)

(motor :a (motor :c (motor :b :back)))
(sleep 5)
(motor (if (= (random 2) 0) :a :c) :forward)
(sleep 5)
(forward)))

(wait-until (pressed?))
(motor :a (motor :c :off))
))

light b

motor a motor c

sensor 2

light clight a

Tracing Rover
1. Tracks a line, while recording the movement as a list
2. Draws the line on a white paper, by replaying the recorded

movement

	XS: Lisp on Lego? Mindstorms
	Hardware organization of Mindstorms
	Features of XS
	System overview of XS
	Data types
	Pseudo data types & reader constants
	Common functions
	Common functions (cont.)
	Common functions (cont.)
	Common functions (cont.)
	Lego-specific functions
	Lego-specific functions (cont.)
	Lego-specific functions (cont.)
	The Evaluator
	Object representation
	Heap management
	Current status of XS project
	show time
	Using XS: Preparation
	Using XS: Starting up
	Using XS: Error messages
	Using XS: Trace and Untrace
	Using XS: Terminal interrupt
	Programming XS: Tail recursion
	Programming XS: Loops
	Programming XS: Event watchers
	Sample program: Land Rover
	Sample program: Land Rover
	Sample program: Land Rover II
	Tracing Rover

