
Tail Recursion Optimization in JVM

Akishige Yamamoto (Mathematical Systems Inc)
Taiichi Yuasa (Kyoto University)

What is tail recursion?
 A method call is tail-recursive if the return value of
the called method is returned as the value of the
caller method.

static int foo(...) {
　 …
　 n = bar(…);
　 …
　 return bar(…);
}

Not tail recursive

Tail recursive

Functional programming & Tail recursion

•  In functional programming, loops are realized with tail
recursion.

•  Such programs cause stack overflow on Java VM
because each call pushes a frame on the stack.

S(n)=T(n,0)
T(0,r)=r
T(n,r)=T(n-1,r+n) (n>0)

static int sum(int n, int r) {
　 if (n == 0) return r;
 else return sum(n-1, r+n);
}

n=100
r=0	

n=99
r=100	

n=98
r=199	

F	

Functional programming & Tail recursion (cont.)

•  Trampoline methods enable the realization of general
tail-recursion optimization in JVM; however, its speed
efficiency is poor.

⇒Improvement of JVM itself is necessary for efficient
tail-recursion optimization

n=100
r=0	

n=99
r=100	

n=98
r=199	

F	 F	 F	

call
sum(99, 100) 	

call
sum(98, 199) 	

...	
n=0
r=Σ	

F	

return
Σ 	

F	

Frame operation for a method call

Fram
e n

Args

Operands

 Frame
body

Local vars
& args

Args

Fram
e

 n

Operands

Frame
body

Local vars
& args

Fram
e n+l

Frame
body

Local vars

Args

Fram
e

 n

Operands

Frame
body

Local vars
& args

What is tail-recursion optimization?

•  For a tail-recursive call, there are no codes to
execute in the caller method after the called method
returns.

•  Therefore, the frame used under current execution
can be discarded and its area can be reused as a
new frame.

•  This method is called tail-recursion optimization.

static int sum(int n, int r) {
　 if (n == 0) return r;
 else return sum(n-1, r+n);
}

Frame operation in calling a method

Fram
e

 n-l

Operands

Frame
body

Local vars
& args

Fram
e

 n

Args

Frame
body

Local vars
& args Args

Fram
e

 n-l

Operands

Frame
body

Local vars
& args

Fram
e

 n

Frame
body

Local
vars

Args

Fram
e

 n-l

Operands

Frame
body

Local vars
& args

In case of tail recursive
call, only arguments are
stored in the operand
stack.

copy

Args

Implementation of tail-recursion optimization in JVM

•  The improved JVM automatically detects tail
recursive calls while loading class files, and replaces
them with tail recursion instructions

•  The improved JVM is implemented so that tail
recursive instructions are handled appropriately.

Extended tail recursion instructions

Standard
method-call instructions

Extended
tail-recursion instructions

Extended self-tail-
recursion instructions

invokeStatic tailInvokeStatic selfTailInvokeStatic

invokeVirtual tailInvokeVirtual selfTailInvokeVirtual

invokeInterface tailInvokeInterface selfTailInvokeInterface

invokeSpecial tailInvokeSpecial selfTailInvokeSpecial

Operation of tail-recursion instructions

•  When A calls B tail-recursively, ...
•  Discard the current frame (for A), and overwrite the

region with a new frame for the called method B
•  Adjust the contents of the new frame so that B

directly returns to the caller of A

args to A	

F	 F	 F	

A	

args to B	

args to B	 args to B	

B	

Operation of self tail-recursion instructions

•  Self tail recursion: a method calls itself tail recursively.
•  The basic operation is the same as that of the tail-

recursion instruction.
•  However, more efficient implementation is expected

owing to the similarity between the structure and size of
the current frame and the frame for the called method

args to A	

F	 F	

A	

args to A	

args to A	

A	

Automatic conversion into tail-recursion instructions

 The improved JVM automatically detects tail recursion during
class loading and replaces standard JVM instructions with
corresponding tail-recursion instructions.

1.  A method call instruction is followed by any number of
instructions that change only pc (such as nop and goto), and
then followed by a return instruction.

2.  The type of the return value of the called method agrees with
that of the return instructions (ireturn, Ireturn, freturn, dreturn,
areturn, return).

3.  There is no exception handler between the method-call
instruction and the return instruction.

When these conditions are satisfied, the method call instruction can
be replaced with a corresponding tail-recursion instruction.

Detection of tail recursion from bytecode

 Typical patterns when replacement with the tail-
recursion instruction is possible.

1.  Invokestatic foo // foo returns a reference
areturn

2.  Invokevirtual bar // bar returns void
nop
return

3.  Invokeinterface baz 0 // baz returns double
goto label
…

　label:
dreturn

Effects of tail-recursion optimization

Difference in processing time
Tnormal(n,m)-Ttail(n,m)
= n(Cret + Ccall - C’call - mCcopy) – Cret

where
 n: depth of recursion
 m: number of arguments

1.  The effect of tail-recursion optimization on processing time is
approximately proportional to the depth n. With increasing
recursion depth, the effect (gain or loss in speed) is enhanced.

2.  When the increase in speed as a result of reusing frames (Ccall-
C’call) and the reduction in the number of returns surpasses the
overhead (mCopy) due to memory transfer, execution efficiency
improves; however, when the overhead surpasses the increase in
speed, execution efficiency deteriorates.

Effects of self-tail-recursion optimization
(Numbers of recursions = 100, 500, 1000

Number of arguments

P
rocessing tim

e (µs)

Number of recursions=1000

Number of recursions=500

Number of recursions=100

Effects of (non-self)tail-recursion optimization
(Numbers of recursions = 100, 500, 1000)

P
rocessing tim

e (µs)

Number of arguments

Number of recursions=1000

Number of recursions=500

Number of recursions=100

Frequency distribution of number of arguments

Number of arguments

N
um

ber of m
ethods

Frequency distribution of number of arguments
of 25,579 methods in jave and javax packages

Turning point of the effects of (nonself-)
tail-recursion optimization

Turning point of the effects of self-tail-
recursion optimization

Effects of optimization

•  The effects of self-tail-recursion optimization is
significant.

•  The effect of general (i.e., non-self) tail-recursion
optimization is limited..

Side effects
•  Programs that caused stack overflow might be

executable with optimization.

Example in which optimization is effective (1)

•  Trace a binary tree and double all the node values.

public static void twice(Tree tree) {
　if (tree != null) {
　　　tree.val *= 2;
　　　twice(tree.left);
　　　twice(tree.right);
　}
}

When applied to a binary tree
with 2ˆ13-1=8191 nodes

JVM Time required (ms)

Conventional JVM 23

Improved JVM 20

Example in which optimization is effective (2)

•  Tower of Hanoi

public static void solve(int n, int src, int dst) {
 　if (n>1)

 solve(n-1, src, 3-src-dst);
　 // Move disk n from src to dst
　 if (n>1)

 solve(n-1, 3-src-dst, dst);
}

Execution time required when
the number of disks is 23

JVM Time required (ms)

Conventional JVM 17.257

Improved JVM 16.312

Example of codes that are unexecutable on
conventional JVM

public static boolean isEven(int n) {
if (n==0) return true;
else return isOdd(n-1);

}
public static boolean isOdd(int n) {

if (n==0) return false;
else return isEven(n-1);

}
•  Stack overflow occurs on conventional JVM.
•  Execution is completed regardless of n, on improved

JVM.

