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What is tail recursion?  
 A method call is tail-recursive if the return value of 
the called method is returned as the value of the 
caller method.  

static int foo(...) { 
　  … 
　  n = bar(…); 
　  … 
　  return bar(…); 
} 

Not tail recursive  

Tail recursive  



Functional programming & Tail recursion  

•  In functional programming, loops are realized with tail 
recursion. 

•  Such programs cause stack overflow on Java VM 
because each call pushes a frame on the stack. 

S(n)=T(n,0) 
T(0,r)=r 
T(n,r)=T(n-1,r+n)  (n>0) 

static int sum(int n, int r) { 
　  if (n == 0) return r; 
    else return sum(n-1, r+n); 
} 
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Functional programming & Tail recursion (cont.) 

•  Trampoline methods enable the realization of general 
tail-recursion optimization in JVM; however, its speed 
efficiency is poor.  

⇒Improvement of JVM itself is necessary for efficient 
tail-recursion optimization  
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Frame operation for a method call 
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What is tail-recursion optimization?  

•  For a tail-recursive call, there are no codes to 
execute in the caller method after the called method 
returns.  

•  Therefore, the frame used under current execution 
can be discarded and its area can be reused as a 
new frame. 

•  This method is called tail-recursion optimization.  

static int sum(int n, int r) { 
　  if (n == 0) return r; 
    else return sum(n-1, r+n); 
} 



Frame operation in calling a method 
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Implementation of tail-recursion optimization in JVM  

•  The improved JVM automatically detects tail 
recursive calls while loading class files, and replaces 
them with tail recursion instructions 

•  The improved JVM is implemented so that tail 
recursive instructions are handled appropriately.  



Extended tail recursion instructions  

Standard  
method-call instructions  

Extended  
tail-recursion instructions  

Extended self-tail-
recursion instructions  

invokeStatic tailInvokeStatic selfTailInvokeStatic 

invokeVirtual tailInvokeVirtual selfTailInvokeVirtual 

invokeInterface tailInvokeInterface selfTailInvokeInterface 

invokeSpecial tailInvokeSpecial selfTailInvokeSpecial 



Operation of tail-recursion instructions  

•  When A calls B tail-recursively, ... 
•  Discard the current frame (for A), and overwrite the 

region with a new frame for the called method B 
•  Adjust the contents of the new frame so that B 

directly returns to the caller of A 
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Operation of self tail-recursion instructions  

•  Self tail recursion: a method calls itself tail recursively. 
•  The basic operation is the same as that of the tail-

recursion instruction.  
•  However, more efficient implementation is expected 

owing to the similarity between the structure and size of 
the current frame and the frame for the called method 
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Automatic conversion into tail-recursion instructions  

 The improved JVM automatically detects tail recursion during 
class loading and replaces standard JVM instructions with 
corresponding tail-recursion instructions.  

1.  A method call instruction is followed by any number of 
instructions that change only pc (such as nop and goto), and 
then followed by a return instruction. 

2.  The type of the return value of the called method agrees with 
that of the return instructions (ireturn, Ireturn, freturn, dreturn, 
areturn, return).  

3.  There is no exception handler between the method-call 
instruction and the return instruction. 

When these conditions are satisfied, the method call instruction can 
be replaced with a corresponding tail-recursion instruction. 



Detection of tail recursion from bytecode  

 Typical patterns when replacement with the tail-
recursion instruction is possible.  

1.  Invokestatic foo // foo returns a reference 
areturn 

2.  Invokevirtual bar // bar returns void 
nop 
return 

3.  Invokeinterface baz 0 // baz returns double 
goto label 
… 

　label: 
dreturn 



Effects of tail-recursion optimization  

Difference in processing time 
Tnormal(n,m)-Ttail(n,m) 
= n(Cret + Ccall - C’call - mCcopy) – Cret 

where  
 n: depth of recursion 
 m: number of arguments 

1.  The effect of tail-recursion optimization on processing time is 
approximately proportional to the depth n.  With increasing 
recursion depth, the effect (gain or loss in speed) is enhanced.  

2.  When the increase in speed as a result of reusing frames (Ccall-
C’call) and the reduction in the number of returns surpasses the 
overhead (mCopy) due to memory transfer, execution efficiency 
improves; however, when the overhead surpasses the increase in 
speed, execution efficiency deteriorates.  



Effects of self-tail-recursion optimization 
(Numbers of recursions = 100, 500, 1000  
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Effects of (non-self)tail-recursion optimization 
(Numbers of recursions = 100, 500, 1000) 
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Frequency distribution of number of arguments  
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Effects of optimization  

•  The effects of self-tail-recursion optimization is 
significant.  

•  The effect of general (i.e., non-self) tail-recursion 
optimization is limited.. 

Side effects 
•  Programs that caused stack overflow might be 

executable with optimization. 



Example in which optimization is effective (1)  

•  Trace a binary tree and double all the node values.  

public static void twice(Tree tree) { 
　if (tree != null) { 
　　　tree.val *= 2; 
　　　twice(tree.left); 
　　　twice(tree.right); 
　}  
} 

When applied to a binary tree 
with 2ˆ13-1=8191 nodes  

JVM Time required (ms)  

Conventional JVM 23 

Improved JVM 20 



Example in which optimization is effective (2)  

•  Tower of Hanoi  

public static void solve(int n, int src, int dst) { 
 　if (n>1) 

  solve(n-1, src, 3-src-dst); 
　 // Move disk n from src to dst 
　 if (n>1) 

   solve(n-1, 3-src-dst, dst); 
} 

Execution time required when 
the number of disks is 23  

JVM Time required (ms)  

Conventional JVM 17.257 

Improved JVM 16.312 



Example of codes that are unexecutable on 
conventional JVM  

public static boolean isEven(int n) { 
if (n==0) return true; 
else return isOdd(n-1); 

} 
public static boolean isOdd(int n) { 

if (n==0) return false; 
else return isEven(n-1); 

} 
•  Stack overflow occurs on conventional JVM.  
•  Execution is completed regardless of n, on improved 

JVM.  


