
Return Barrier
Incremental Stack Scanning for

Snapshot Real-time Garbage Collection

Taiichi Yuasa
Kyoto University



Dynamic Data Allocation
• Lisp, Prolog, C++, Java, C#, …, even BASIC
• allocate an object when required, i.e., dynamically

• objects may become useless
– memory space is limited
– reclaim unused objects so that they can be 

reused for further computation

heap

xNode x, y;
x = new Node();
y = new Node();
x.left := y;

y



Automatic Garbage Collection
garbage: data objects that can never be accessed
• i.e., those that are not reachable from the roots
• roots: locations that the program can access directly 

e.g., global/local variables, registers, …

heap

roots



Mark & Sweep GC
• suspend the application program
• mark all objects reachable from the roots
• sweep the entire heap and reclaim all unmarked 

objects
• resume the application program

heap

roots



Mark & Sweep GC
• suspend the application program
• mark all objects reachable from the roots
• sweep the entire heap and reclaim all unmarked 

objects
• resume the application program

heap

roots



Tri-colour Algorithm
• all objects are initially white
• for each root,

– make gray the pointed object
• while grays remain,

– choose a gray object X
– make X black
– make gray all white objects 

pointed to from X 
• for each object in the heap

– if white, free it
– if black, make it white

x

x



Incremental (Real-time) GC
• application program is suspended during GC
• each GC typically takes seconds to minutes
• not suitable for real-time applications

• one GC chunk (mark/sweep N objects) at a time

• each time a new object is created

application

GC



Problem
• application keeps running during GC
• reference relations may change during GC
• may fail to mark some objects in use

a

a

a

b

b

b

c

c

d

c

a.right := b.right;

b.right := d;



Snapshot Real-time GC
by Yuasa 1990

write barrier: 
make gray the object previously pointed to,
when a pointer is replaced by another

for the example:



Snapshot Real-time GC
by Yuasa 1990

• all objects in use at the beginning of a GC
are guaranteed to become black eventually

• at the beginning of a GC,
make gray all objects directly pointed to from roots

• no write barrier necessary for roots
– previous object eventually becomes black

• efficient => used in many systems
x

x := x.right;
x



Root Scanning
• make gray all objects directly pointed to from roots
• local variables are stored in the stack
• stack size changes dynamically

stack

top

global vars 
& registers

bottom



Stack Size & Suspension Time

would like to 
reduce 
suspension time 
＜ 100 μsec



Why 100μsec Suspension?

UNIX USER 2002/6

We chose realtime
Linux because it allows 
control in 100μs.

... However, this model 
is controled in 1 ms, 
because of the 
constraint of USB
communication protocol.



Incremental Stack Scanning
• scan the stack little by little

stack

top

bottom

direction
of scan



Problem

a

b

stack

run

b

a

stack



Function Frames

current 
frame

Only variables in the current frame can be accessed.

call

return

call

return

Ｆ Ｆ

Ｇ

Ｈ

Ｇ

Ｆ



Scanning vs Return

stack

return

Good Bad

stack



Scanning vs Return

stack

Good Bad

stack

return



Return Barrier

stack

scan

stack stack

return



It’s free (for C-like frames)

scan frames and 
jump to

return addr
args

return addr
old base
old top
locals locals

args

old base
old top

barrier code

ordinary frame frame with barrier



It’s free (case Java)

return addr

barrier inst

locals/args

op stack

info/args

op stack

return addr

locals/args

info/status
scan frames 
and jump to

ordinary frame frame with barrier

thread struct



Remark (local functions)
Bad Good

(define (F x)
(define (G y z)

… (G z x)… )
(G x x)

)

stack

G

F

stack

F

G

static link



Remark (catch & throw)

stack

throw 
away

F

(define (F x)
(catch ’A (G)) 

)

F

stack

H

(define (H)
(throw ’A …)

)
throw

not a true snapshot!

better performance



Implementation for 
KCL（Kyoto Common Lisp）

• stacks
– value stack
– bind stack
– frame stack
– invocation history stack
– C language stack (KCL does not access this)

• system variables
– only 18 variables

return addresses are pushed on the C stack
⇒cannot handle return addresses
⇒needs explicit barrier checking on function returns



Suspension Times

0

10

20

30

40

50

60

10 40 70 100 130 160 190 220
K0

tim
e 

[u
se

c]

boyer max
fib max
boyer ave
fib ave

(# of stack words to scan at a time)



Suspension Times by
Return Barrier

0
5

10
15
20
25
30
35
40
45

K0 20 40 60 80 100 120 140 160 180 200
K0

m
ax

 su
sp

en
sio

n 
tim

e
[u

se
c]

0

5

10

15

20

25

30

35

nu
m

be
r o

f s
us

pe
ns

ion
s

(in
 2

70
 G

Cs
)



Implementation for JeRTy
• Java runtime system of Omron Inc.,
• for process control
• snapshot real-time GC

– with write barrier for roots
• we implemented return barrier and removed write 

barrier for roots



Benchmark Results

75

80

85

90

95

100

aloa new&dup fib hsort msort

original return barrier



Implementation for EusLisp
• multi-threaded Lisp system of 

Tokyo Univ.
• to control robots (humanoids)
• badly needs a real-time GC
• they implemented snapshot 

GC ...
• but stack scanning is done at 

once
• we have implemented return 

barrier for the system
• They are rewriting C code into 

Lisp!



Parallel GC
• The mutator accesses 

above the return barrier.
• The collector accesses 

below the return barrier.
• No lock is necessary to 

access the stack. 
• The return barrier need to 

be locked when moved.

stack

collector

mutator


	Return Barrier
	Dynamic Data Allocation
	Automatic Garbage Collection
	Mark & Sweep GC
	Mark & Sweep GC
	Tri-colour Algorithm
	Incremental (Real-time) GC
	Problem
	Snapshot Real-time GCby Yuasa 1990
	Snapshot Real-time GCby Yuasa 1990
	Root Scanning
	Stack Size & Suspension Time
	Why 100μsec Suspension?
	Incremental Stack Scanning
	Problem
	Function Frames
	Scanning vs Return
	Scanning vs Return
	Return Barrier
	It’s free (for C-like frames)
	It’s free (case Java)
	Remark (local functions)
	Remark (catch & throw)
	Implementation for KCL（Kyoto Common Lisp）
	Suspension Times
	Suspension Times byReturn Barrier
	Implementation for JeRTy
	Benchmark Results
	Implementation for EusLisp
	Parallel GC

