International Lisp Conference 2002, San Francisco

Return Barrier

TATICHT YUASA," YUICHIRO NAKAGAWA," TSUNEYASU KOMIYA?
and MASAHIRO YASUGT

Garbage collection (GC) is the most popular method in list processing systems such as Lisp
to reclaim discarded cells. GC periodically suspends the execution of the main list processing
program. In order to avoid this problem, real-time GC has been proposed, which runs in
parallel with the main program so that the time for each list processing primitive is bounded
by some small constant.

The snapshot GC, which is one of the most popular real-time GC algorithms, has to mark
all cells directly pointed to from the root area at the beginning of a GC cycle. The suspension
of the main program by this root scan cannot be ignored when the root area is large.

This paper proposes “return barrier” in order to divide the process of root scan into small
chunks and to reduce the suspension time of the main program. The root area on the stack
is marked frame by frame each time a new cell is required. When a function returns, the
garbage collector checks if cells pointed to from the frame of the caller function have been
already marked, and marks them if not. After marking all cells directly pointed to from the
root area, other cells are marked as in the original snapshot GC.

In this paper, we implemented the snapshot GC equipped with the return barrier in KCL
(Kyoto Common Lisp). We compare and discuss the suspension times of this GC and the

2002

original snapshot GC.

1. Introduction

In most list processing systems, such as Lisp,
data objects are represented by cells. A cell is
allocated in the heap each time the application
program (the mutator) requires a new data ob-
ject. After a while, a cell may become garbage,
i.e., it may no longer be used by the mutator.
Since only a limitied amount of cells can be al-
located in the heap, the system has to reclaim
garbage cells and reuse them, when there re-
mains no (or small) space available in the heap.
The process to reclaim garbage cells is called
garbage collection or GC for short. If a cell is
pointed to directly or indirectly from the data
area (the root set) that can be accessed any time
to proceed computation, then the cell may be
still in use. Therefore, garbage collection tra-
verses pointers from the root set and reclaims
only those cells that are not visited during the
traversal. The reclaimed cells, which can be
reused for further computation, are called free
cells.

Most garbage collection is called stop garbage
collection in that the system suspends compu-
tation of the mutator during garbage collection.
Since the pause time is more than ten millisec-
onds in most cases, systems with stop garbage

1t Graduate School of Informatics, Kyoto University

collection are not suitable for real-time appli-
cations. On the other hand, many realistic ap-
plications, such as those in intelligent agents
and robot control, require real-time processing.
In order to realize real-time list processing sys-
tems, real-time garbage collection is necessary,
which does not suspend the computation for
long.

On uni-processor machines, real-time garbage
collection can be realized by splitting the en-
tire GC process into small chunks and execut-
ing one chunk at a time along with computation
of the mutator. Unlike stop garbage collection,
real-time garbage collection has to cope with
changes in the entire data structure of the heap,
since the mutator keeps running even during
garbage collection.

Algorithms so-far proposed for real-time
garbage collection are characterized by their be-
havior against changes in the data structure.
The snapshot algorithm®)-19:12) developed by
Yuasa requires special treatment, called write
barrier, only when contents of cells are updat-
ed. Because of this feature, the algorithm has
the following advantages over the other algo-
rithms so-far proposed.

¢ Runtime overhead is kept relatively small,

even without using dedicated hardware.

o It is relatively easy to implement in systems

with conventional stop garbage collection.

2 International Lisp Conference 2002, San Francisco 2002

Thus the algorithm is suitable particularly for
systems on off-the-shelf machines.

Snapshot garbage collection is based on the
mark-sweep algorithm, which consists of two
phases. The mark phase marks all cells that
are pointed to directly or indirectly from the
root set, and the sweep phase scans the entire
heap to reclaim all unmarked cells as free cells.
During the mark phase, the snapshot algorith-
m marks a small number of cells each time a
new cell is requested by the mutator. During
the sweep phase, it scans a small amount of the
heap area each time a new cell is requested. In
addition, at the beginning of each GC cycle,
the snapshot algorithm takes a “snapshot” of
the root set. That is, it scans the entire root
set and marks all cells that are directly pointed
to from the root set. This extra phase is called
root scan. Even if a cell becomes garbage dur-
ing a GC cycle, it is not reclaimed during that
cycle. That cell will be reclaimed during the
next cycle.

The weakness of the snapshot algorithm was
that it suspends the mutator during root scan.
Most of the suspension time is spent for scan-
ning the stack, and the time for a stack scan
depends on the stack size. Since the stack size
varies dynamically, it is difficult to estimate
how long a stack scan phase takes. In the worst
case, the stack may be extremely long and the
mutator’s computation may be suspended for a
long time.

In this paper, we propose a mechanism called
return barrier, which is introduced to scan the
stack incrementally. This mechanism is based
on the following runtime mechanism, which is
common to most modern programming lan-
guages.

e Program execution is performed by nested

calls of functions (or methods).

e When a function is invoked, a new data
area, called function frame, that is neces-
sary to execute the call is pushed onto the
stack. When a function returns, its frame
is popped and the contents are discarded.

e While a function is being executed, it ac-
cesses only its own frame, but no other
frames on the stack. (We will discuss ex-
ceptional cases in section 2.4.)

Return barrier has been implemented in several
language systems, including Common Lisp!!),
Scheme!), multi-threaded Lisp”™, and Java®.
In this paper, we report only the first implemen-
tation and show that return barrier is effective

stack (a) (b)

Fig.1 Problem of incremental stack scan
to reduce suspension times to the level that is
acceptable for most real-time applications.

2. Incremental Root Scan

The root set of a language system is divided
into the stack area and the other area, called
static area. The static area consists of system
global variables such as the variable that con-
tains a pointer to the symbol table. Since the
static area is relatively small, it can be scanned
at once without pausing the mutator for a long
time. In Kyoto Common Lisp (KCL)'"), for in-
stance, the size of the static area that must be
scanned consists of only 18 words, as we will dis-
cuss in section 4.1. This size of the static area
is negligible when compared with the size of the
stack area, which sometimes becomes one thou-
sand words long. Therefore, we focus on how
to scan the stack area incrementally.

2.1 The Problem

In order to obtain the same effects as stop
stack scan, incremental stack scan has to guar-
antee that each stack entry be scanned before
its content is modified by the mutator. Other-
wise, some cells may be left unmarked after a
mark phase, while they are still in use. Fig. 1
illustrates an example of such a situation. In
the figure, gray stack entries are those already
scanned and cells with gray “mark bits” are
those already marked. Here we assume the s-
tack is scanned downwards from the top to the
bottom.

Consider the situation of Fig. 1 (a), where
the stack has been partly scanned and cell A
is already marked. Cell B is not yet marked
because it is pointed to only from a non-scanned
entry. Suppose that execution of the mutator is
resumed in this status and the mutator changes
the status as illustrated in Fig. 1 (b). Cell B

Return Barrier 3

—_—l H_
current
frame —F] —F] —F]
call call
e e
- —
return return
(@) (b) ()

Fig.2 Function frames

is still pointed to from the stack, but the entry
that pointed to cell B in Fig. 1(a) now points
to another cell C'. After this, root scan will be
continued, but cell B cannot be marked because
it is pointed to only from an already scanned
entry. As the result, cell B will be reclaimed
even though it is still in use.

This situation could be avoided by using
write barrier explained in section 1. Howev-
er, write barrier for stack entries causes a large
runtime overhead, mainly because every assign-
ment operation to local variables becomes slow.
Therefore, we would like to solve the problem
without using write barrier. The key idea of our
solution is to make use of the characteristics of
function frames.

2.2 Function Frames

In general, program execution is performed
by nested calls of functions. When a function
is invoked, its function frame is pushed onto the
stack. Each frame contains information that is
necessary to execute the function call, such as
arguments, local variables, and the return ad-
dress. The frame of the function that is current-
ly being executed is called the current frame.
When a function returns, the current frame is
popped from the stack. Fig. 2 illustrates this
mechanism of function frames.

In Fig. 2 (a), function F' is being executed
and its frame is the current frame. When F
invokes another function G, a new frame for G
will be pushed onto the stack and it becomes
the new current frame (Fig. 2 (b)). When G
returns, its frame will be popped and the stack
returns to the previous state before the call of G
(Fig. 2 (a)). If G further invokes another func-
tion H, then a new frame for H will be pushed
(Fig. 2 (c)), and the frame will be popped when
H returns (Fig. 2 (b)).

For those programming languages that do not

support local functions, execution of a function
accesses only the current frame at the top of
the stack. The other frames below the current
frame are not accessed until control returns to
the corresponding function and the frame be-
comes the current frame. This implies that the
problem described in the previous section can
be solved without write barrier to the stack, if
it is guaranteed that the current frame always
resides in the part of the stack that have been
scanned already.

2.3 Return Barrier

Return barrier is a mechanism to guarantee
that the current frame resides in the scanned
part of the stack at any time during root s-
can. It is placed at the “front line” of root s-
can, i.e., at the bottom of the scanned part of
the stack. When a function returns, if a func-
tion frame below the barrier is to become the
new current frame, then the return instruction
will be trapped. Control then transfers to a
special routine, called barrier code. The barri-
er code proceeds stack scan for some amount
of stack entries including those in the new cur-
rent frame, and then moves down the barrier
to the new front line. After this process, the
trapped return instruction is executed and the
computation of the mutator is resumed.

Fig. 3 shows how return barrier works. In
Fig. 3 (a.1), the current frame of G resides in
the scanned part of the stack. Since execution
of G affects only the current frame, the system
would not fail to mark used cells. However,
when G returns to the caller F', the frame of
F', which is below the front line of stack scan,
becomes the new current frame (Fig. 3 (a.2)).
If control returns to F' immediately, then exe-
cution of F' may cause a problem. In order to
avoid this situation, the return barrier is set at
the front line. The role of the barrier is to trap
the return instruction from G and to transfer
control to the barrier code. After the barrier is
moved down (Fig. 3 (b.2)), control returns to
the caller F', this time the new current frame
of F' being within the scanned part of the stack
(Fig. 3 (b.3)).

Return barrier can be implemented without
any runtime overhead, if the system can access
the return address stored in function frames.
When return barrier is placed at the bottom
of a function frame of F', the system saves the
return address into a fixed location and over-
writes the return address in the frame with the
address of the barrier code. Then, when F

4 International Lisp Conference 2002, San Francisco 2002

returns, control automatically transfers to the
barrier code. At the end of the barrier code, the
system retrieves the saved return address and
transfers control to that address. With this im-
plementation of return barrier, it is not neces-
sary for functions to check whether the barrier
code should be invoked on their returns. This
means their compiled code need not be changed
to cope with return barrier.

Note that at most one return barrier may be
placed in a stack. Therefore, single-threaded
systems require only one location to save the
overwritten return address. For systems that
support multiple threads, each thread has its
own stack and thus one location is necessary
for each thread. The best place would be in the
thread structure, which contains all information
necessary for multi-threading.

With the mechanism of return barrier, incre-
mental stack scan is performed as follows. At
the start of a GC cycle,

e scan the entire static root area that need

to be scanned, and

e scan the current frame and place return

barrier at the bottom of the current frame.
During the root scan phase, each time a new
cell is requested,

current
frame

return
—_—

(a.1) (a.2)

scan return
—_— —_—

(b.1) (b.2) (b.3)
Fig.3 Return barrier

current
frame

static
link

Fig.4 Processing local function frames

e scan a certain number of frames, and
o if the last frame at the bottom of the stack
has been scanned, shift to the mark phase,
e otherwise, place return barrier at the bot-
tom of the last scanned frame.
Incremental scan in multi-threaded systems can
be done in a similar way. Major differences are:
e scan all the current frames of active threads
at the start of a GC cycle and place return
barrier at the bottom of each current frame,
and
e shift to the mark phase only when all stacks
have been scanned.
2.4 Remarks for Implementation
So far, we have assumed:
e execution of a function accesses only the
current frame, and
e functions always return to the caller.
In real systems, these conditions are not always
satisfied. Systems that support local functions
do not satisfy the first condition and those that
support non-local exit do not satisfy the second
condition. In this section, we discuss these ex-
ceptional cases and show return barrier can be
used efficiently for those systems.
Consider the following function definition in
Common Lisp?).
(defun F (x)
(labels ((G (y z) --- (G z x) ---))
(G x x)))
In function F, local function G is defined, and
G invokes G itself recursively. Variable x in the
expression (G z x) is the parameter to F and is
allocated in the frame of F. Thus, during execu-
tion of G, G accesses not only G’s frame but also
F’s frame. In order to make this access possible,
G’s frame contains the static link to F’s frame
(see Fig. 4).
In general, during execution of a local func-
tion, some frames accessible through the static
link may be located below return barrier as in

Return Barrier 5

current
frame

throw
—_—

Fig.5 Processing non-local exit

the case of Fig. 4. Therefore, when the system
scans the frame of a local function, it should s-
can all frames that are accessible from the frame
through the static link.

This special handling of local function frames
does not cause an obstacle to real-time process-
ing, since the number of frames that are acces-
sible from a local function through the static
link does not exceed the nested level of that
local function.

Non-local exit transfers control to a certain
function that satisfies some condition, rather
than to the caller. Catch & throw is a typical
non-local exit mechanism. Fig. 5 illustrates the
behavior. Consider the case where function F
establishes a catcher and then a throw is ex-
ecuted that corresponds to the catcher during
execution of function H (Fig. 5 (a)). By throw-
ing, the normal mechanism of function call and
return is skipped, and control returns directly
to function F' from function H (Fig. 5 (b)).

If a non-local exit unwinds the stack be-
yond return barrier, the new current frame (F’s
frame in the example) must have been scanned
before control transfers to the catcher function.
In general, the destination frame (i.e., the new
current frame) of a non-local exit is dynami-
cally searched. In the case of catch & throw,
the system searches the stack for a catcher with
the same tag given to the throw, from the top
towards the bottom. During this search, the
system can determine whether the stack is un-
wound beyond return barrier. If so, the only ex-
tra work is to scan the new current frame. The
point here is that, we do not need to scan those
frames between the old current frame and the
new current frame. The number of such frames
is unbounded, and if the system scans them all,
it may fail real-time processing. However, since

these frames are never accessed, no problem will
arise even though they are skipped without be-
ing scanned. Skipping some frames means the
algorithm is not strictly a snapshot any more.
This is because those cells that are reachable
only from skipped frames are reclaimed during
the current GC cycle. Nevertheless, skipping
frames is desirable, since it only causes some
garbage cells to be reclaimed earlier.

3. When to Initiate

In real-time garbage collection, the mutator
keeps requiring new cells even during garbage
collection and free cells are consumed. Howev-
er, garbage cells are reclaimed only during the
sweep phase. If there remain too few free cell-
s at the start of a GC cycle, the system may
run out of free cells before it starts reclaiming
garbage cells. This situation is called starva-
tion. If the system falls into starvation during
garbage collection, it has either to expand the
heap or to complete the rest of the GC cycle at
once. These “emergency processes” may pause
the mutator for a long time. Therefore, the
system should initiate a GC cycle while there
remain enough number of free cells. In this sec-
tion, we discuss a sufficient condition to avoid
starvation. We use the following system param-
eters.

Ky: the number of entries on the stack to be
scanned at each cell request during the root
scan phase

K : the number of cells to be marked at each
cell request during the mark phase

K>5: the number of cells to be swept at each
cell request during the sweep phase

Fig. 6 gives a rough graph of F,(t), the number
of free cells of type ¢ when the mutator requests
the ¢-th new cell after the start up of the system.
In the figure, we assume a GC cycle starts at
time a, when the number of free cells of type ¢
reaches a certain number M,. Then at time b,
the mark phase terminates and the sweep phase
starts, and the GC cycle ends at time c.

When garbage collection is initiated, the sys-
tem first scans root incrementally. No garbage
cells are reclaimed during this root scan phase.
As new cells are requested, the number of free
cells decreases. Let R(a) be the stack size at
time a. Then the number of cell requests dur-
ing root scan is:

R((I) /KO
Root scan is finished at time t = a + R(a)/ Ko,
and the mark phase starts. Since no garbage

6 International Lisp Conference 2002, San Francisco 2002

Fa(®

Mq

a b c t
Fig.6 Number of free cells

cells are reclaimed during the mark phase, the
number of free cells keeps decreasing. Let A(a)
be the number of used cells at the start of the
GC cycle. Since K; used cells are marked at
each cell request, the number of cell requests
during the mark phase is:

A(a)/ K,
Therefore, we obtain the following equation.

b=a+ R(a)/Ky+ A(a)/ K,
The mark phase is finished at time b and the
sweep phase starts. Let N, be the total num-
ber of type ¢ cells in the heap and A,(a) be
the number of used cells of type ¢ at time a.
Then the number of type ¢ garbage cells that
are reclaimed during the sweep phase is:

Ny — Aq(a) — Fy(a)
Usually, these garbage cells are scattered over
the entire heap, but in an extreme case, they
all resides at the end of the heap. Therefore, at
most

(N = (Ng = Ag(a) = Fy(a)))/ K>
cell requests will be made before the system be-
gins to reclaim garbage cells of type ¢q. If cell
requests of type ¢ cells happen at the frequency
rate of Cj, then before the system starts re-
claiming type g garbage cells, at most

C, (R(a)/ Ky + A(a) /K

+(NV = Ny + Ay(a) + Fy(a))/ K>)

free cells of type ¢ will be consumed after the s-
tart of the GC cycle. If there remain more than
this number of type ¢ free cells, then the sys-
tem does not fall into starvation. Thus we ob-
tain the following sufficient condition to avoid
starvation.

Fy(a) 2 Cy (R(a)/ Ko + A(a)/ Ky

+(N = Ny + Aq4(a) + Fy(a))/K>)

(1)
In order to determine when to start a GC cycle
in real systems, let us give estimated values for

Cq, R(a), A(a), and A,(a).

First, if we assume that CjA(a) is equal to

the number of used cells A,(a) of type g.

C,A(a) = 4,(a) (2)
We also assume a clever memory allocation so
that more frequently requested cell types have
more cells in the heap than less frequently re-
quested cell types. That is, the number of type
q cells in the heap is proportional to the fre-
quency rate C; of type ¢ cell requests.

Cqy=Ny/N
Then from the equation (2), we obtain:

A(a) = NA,(a)/N,
Ag(a) is hard to estimate because it depends
on when the system initiates a GC cycle. N-
evertheless, we need an estimation of 44(a) to
determine when to start a GC cycle. We use
the value of the worst case, where all type ¢
cells other than free cells are in use.

Ag(a) = Ny — Fy(a)
Tt is impossible to estimate the stack size R(a)
at time a, since it depends not only on when
to start a GC cycle, but also on application
programs. Again, we consider the worst case,
where all used cells are pointed to from the s-
tack.

R(a) = A(a) = N(N, - F,(a))/N,
With these estimated values, the condition (1)
is transformed to:

Fya) > N,(1/Ko+1/K1 +1/K>)

14+1/Ko+1/K;
In other words, the system can avoid starvation
when the number of type ¢ free cells becomes:
M. = N,(1/Ko+1/K, + 1/K>)
“ 1+1/Ko+1/K;

For instance, in case Ky = K; = Ky = 20,

M, = 0.1364N,
That is, the system should start a GC cycle
only when the number of free cells of type ¢
becomes less than 14% of the g cells in the heap.
On the other hand, with the original snapshot
algorithm that scans the entire root at once,
Ky = oo and we obtain:

M, = 0.0952N,
Snapshot garbage collection with return barri-
er should be initiated earlier than the original
snapshot because of the difference of these t-
wo values of M,. Note that since we assumed
R(a) = A(a) in the above calculation, garbage
collection is initiated much earlier than neces-
sary. Nevertheless, we observe the difference
with the original snapshot will be acceptable.

4. Implementation on KCL

In this section, we report our first implemen-

Return Barrier 7

tation of return barrier in KCL (Kyoto Com-
mon Lisp)'"). We first describe the root set of
KCL and then we discuss the problems we en-
countered and our solutions to them.

4.1 The Root Set of KCL

The root set of KCL consists of the static

area and the stack. The static area is actually
a vector of 160 cell pointers. Most elements of
this vector is initialized during the start-up of
KCL and remain unchanged. These elements
are used to store data objects, such as the nil
object, that are used directly by the system
and to protect them from being reclaimed by
garbage collection. Only 18 elements of the
vector change their values at runtime. These el-
ements are used as system-internal temporary
variables. Only these 18 elements need to be
scanned at the start of a GC cycle. The oth-
er constant elements can be scanned little by
little, since no write access is made to them.

KCL uses the following five stacks.

e the value stack, in which local variables and
temporary variables for compiled functions
are allocated, and through which parame-
ters and return values are passed.

e the bind stack, which is used to implement
shallow binding of dynamic variables. Each
entry is a pair of the name of a dynamic
variable and its previous value.

e the frame stack, which stores catchers for
non-local exit that may be initiated by
throw or return-from. Each catcher con-
tains necessary information to resume com-
putation after the non-local exit, including
stack pointers of the other stacks when a
catcher is established by catch or block.

e invocation history stack, which contains
the history of function calls and is use for
debugging.

e the C language stack. The compiler of K-
CL translates Lisp code into C language
code and generates object code by using
a C compiler. The kernel of KCL is also
written in the C language. Therefore, exe-
cution of KCL is controlled by using the C
language stack. In order to provide a high
portability, KCL never accesses the C stack
directly.

Among these stacks, the C stack is not sub-
ject to root scan. Although cell pointers may
be stored in the C stack, such pointers are al-
ways stored also in the value stack. In this way,
garbage collection is made independently from
the structure of the C stack.

vs_base —»;

vs_base —»; call

-—
return

Fig.7 The value stack

4.2 Implementation of Return Barrier

Since return addresses in KCl are stored in
the C stack, they cannot be overwritten with
the barrier code address. Therefore, we cannot
apply the efficient method described in section
2.3 to implement return barrier. Instead, we
adopted the following algorithm for each stack
other than the C stack.

e When garbage collection is initiated, scan
the 18 roots that may change their values
dynamically, and scan the current frame of
each stack.

e Each time a cell is requested, scan each s-
tack for a certain number of entries.

e When a function returns, check whether
the new current frames of each stack has
been scanned. If not, scan the stack un-
til the entire new current frame has been
scanned.

e When a non-local exit is initiated by throw
or return-from, scan the new current
frame of each stack.

With this algorithm, whenever a function re-
turns, the system has to check whether the
new current frame has already been scanned.
This causes an overhead on function execution,
rather than root scan itself. Therefore, the sys-
tem performance is reduced compared with the
algorithm in section 2.3.

In order to realize this algorithm, a vari-
able named barrier is prepared for each stack.
Each barrier variable points to the front line
of stack scan of the associated stack. Return
barrier is implemented for each stack as follows.

The current frame of the value stack is the
stack area between the base pointer vs_base
and the stack top (see Fig. 7). When a func-
tion returns, vs_base moves down towards the
bottom of the stack. When this occurs, the sys-
tem checks whether the new value of vs_base
becomes below barrier. If so, execution of the
mutator is suspended and the system does the

8 International Lisp Conference 2002, San Francisco 2002

following process.

e If there are Ky or more entries between
vs_base and barrier, then scan them al-
1 and moves barrier to the position of
vs_base.

e If there are less than K, entries between
vs_base and barrier, then scan the stack
for K entries and moves down barrier for
Ky entries.

In the former case, the number of entries to
be scanned depends on application programs.
There is the possibility that the mutator be sus-
pended for long. However, that number does
not exceed the number of local variables and
parameters that can be accessed at the same
time and thus it can be regarded to be relative-
ly small in most applications.

The bind stack does not need return barri-
er. When the bind stack is popped, the pre-
vious value of the dynamic variable is stored
in the value slot of the symbol object that
names the dynamic variable. Thus write barrier
guarantees the popped value will be eventually
marked.

Also, the invocation history stack does not
need return barrier. This stack contains point-
ers to active functions, but these pointers are
never overwritten nor stored in the root area.

Each catcher in the frame stack contains the
lexical environment which is used by the in-
terpreter to execute non-compiled functions.
When a non-local exit is thrown, the inter-
preter retrieves this lexical environment to re-
sume computation. Since lexical environments
of KCL are represented by cons cells, they are
subject to marking. Thus, before the frame s-
tack is unwound, the system checks whether the
catcher resides below barrier and if so, scans
the catcher.

5. Performance Evaluation

In order to evaluate the performance of return
barrier, we ran several benchmark tests on the
version of KCL with return barrier and com-
pared the results with those on the version of
KCL with original snapshot GC without return
barrier. In this section, we report the resluts of
the following two typical benchmarks tests.
fib

calculates the n-th Fibonacci number by re-
cursive calls. When this program is run
on the KCL interpreter, two cons cells are
consumed each time a function is invoked,
to build a lexical environment. These cells

30

E 25 i
g fib
1 max
— 20
o
£ 151
=
101
ave
5}
0 .
0 50 100 150 200 Ko
50 -
o .| boyer
g % max
= a0t
(]
g 35¢
'_
30F
251
20
ave
151
101
5t
0
0 50 100 150 200 Ko

Fig.8 Suspension times during root scan

become garbage after the function returns.
We use the results for n = 27 for perfor-
mance evaluation. For n > 27, KCL auto-
matically expands the heap and the result
is not reliable for performance evaluation.
For n < 27, the results are similar to the
case of n = 27.
boyer
proves logical formulas®). This program
consumes a large number of cells and
accesses them frequently. It requires a
large size of the stack, changes the stack
size heavily, and invokes garbage collection
many times.
The machine we used for the tests is a Solaris
machine with 200 MHz Pentium Pro proces-
sor and 192 MBytes of physical memory. In
order to avoid automatic heap expansion dur-
ing test execution, we allocated 1.5 MBytes of
heap area and forced garbage collection before
each test run, so that all garbage cells have
been reclaimed. Time is measured by using the
RDTSC (read time-stamp counter) instruction
as recommended by Intel Corporation®.
5.1 Suspension Times
Return barrier is intended to reduce suspen-
sion time of the mutator by scanning the root
set incrementally. If we use a smaller num-
ber for Ky (the number of stack entries that
are scanned at each cell request), the suspen-
sion time should become smaller. To see the
effect of the value of Ky, we measured the sus-
pension times for various values of K. Fig. 8

Return Barrier 9

o
a

=)
2 fib
geo» X
£ X x
= y IS T
55 K x ><><><>S< X
X X » %
X xx& X X
% x X S
50 X
X % ><>< x X
a5t
40

i
=
5]

120 130 140 150 160 170 180 190

N
IN]
o

N
=]
=]

boyer

Time [Msec]
[
5 3 8

I
N
o

X

i
1)
=]

X X’/S&
x % o
80t % x 3%
60 f X X
40
200 300 400 500 600 700 800

Stack Size

Fig.9 Stack sizes and root scan times

shows the maximum suspension times and aver-
age suspension times for Ko = 10, 20, ..., 220.

From the figure, it is clear that average sus-
pension time decreases in proportion with the
value of Ky. Maximum suspension time shows
the same characteristics, but the relation with
K is not so strong as average suspension time.
Also, for each Ky, it is observed that the dif-
ference between maximum suspension time and
average suspension time is not small. This dif-
ference is regarded as the result of cache effects,
since the same number of entries are scanned
each time.

For comparison, we measured times for root
scan on the version of KCL without return bar-
rier, i.e., suspension times caused by scanning
the entire root at once. Fig. 9 shows the relation
between the stack size and the time for root s-
can. FEach point corresponds to one garbage
collection cycle. Here, the stack size is the to-
tal number of entries of the four stacks of KCL
that are subject to root scan. From the figure,
it is observed that the stack size at the start of a
GC cycle changes heavily. In the boyer bench-
mark, the largest stack size is four times larger
than the smallest.

The relation between the stack size and the
scan time may seem not very strong. This is
perhaps because of the cache effects. Howev-

45 45
o'
2 boyer
B 40 {40
=3
g Number of Is @
£ suspensions 5
"0 fo &
[}
o
25 15 8
"
G
20 {20 2
[}
o
15 . . 15 E
Max suspension time 2
10 {10
5 5
0 50 100 150 200 Ko

Fig.10 Suspension times caused by return barrier

er, we can see the scan time is approximately
proportional to the stack size. The suspension
times for root scan is as follows.

maximum average
fib 58.3 usec | 53.0 usec
boyer | 218.5 usec | 145.3 usec

With return barrier, suspension time depends
on the parameter Ky, but if Ky = 10, which is
the smallest value we used, maximum suspen-
sion time is less than 10 usec and average sus-
pension time is less than 5 usec for both bench-
marks. Thus we can conclude return barrier
reduces suspension time to a great extent.

5.2 Suspension by Barrier Trap

When the stack unwinds beyond return bar-
rier, the mutator process is suspended and the
system scans the roots in the new current frame.
We measured the number of such suspensions
and the maximum suspension time. The result
is that for the fib benchmark, no such suspen-
sion occurred. The result for the boyer bench-
mark is given in Fig. 10.

With return barrier, each time a cell is con-
sumed, return barrier moves down toward the
bottom of the stack. If several functions return
consecutively without requesting new cells, re-
turn barrier may suspend the mutator. Even in
such a case, however, if root scan has already
been finished or if return barrier has moved n-
ear the bottom of the stack, then no suspension
may occur. Thus the possibility of suspension
depends on programs and on runtime status.
It seems a coincidence that no suspension oc-
curred during execution of fib. In such a case,
return barrier on the stack is never used and
should be regarded as a kind of “safety insur-
ance”, since it is impossible to predict whether
return barrier is used or not.

On the other hand, in the case of boyer, re-

10 International Lisp Conference 2002, San Francisco 2002

turn barrier caused suspensions. In case Ko =

10, the mutator was suspended 42 times. As

we will see later in Table 2, execution of boyer

caused 250 GC cycles. So, mutator suspension
occurs once for six GC cycles and we can say
the possibility is very low. Also, it is clear that
the suspension time is quite short. Obviously,
the maximum suspension time decreases as the
value of Ky decreases. On the other hand, the

number of suspensions tends to be larger for s-

maller values of K. This is because the speed

of return barrier to move downwards is propor-
tional to Kj.

5.3 Overhead

In order to evaluate the runtime overhead
of return barrier, we measured the execution
time of benchmark programs, the number of
GC cycles, and the average time for root s-
can. The results are shown in Tables 1 and
2. In these tables, we list the results for Ky =
10, 20, 40, 80, 160 for garbage collection with re-
turn barrier. For snapshot GC without return
barrier, we list the results on the “check added”
system as well as on the system with the origi-
nal snapshot. We will later explain what “check
added” means.

In all these case, the system marks used cells
and sweeps the heap incrementally. Thus the
benchmark results depends on the parameters
K (number of cells to be marked at a time dur-
ing the mark phase) and K> (number of cells in
the heap to be swept at a time during the sweep
phase), as well as on Kj. Since the purpose of
this experiment is to see the overhead of root
scan, we used the fixed values K1 = K5 = 40.

Runtime overhead of return barrier is caused
by the following reasons.

(1) Garbage collection cycles should be initi-
ated earlier than the snapshot algorithm.
This causes more GC cycles.

(2) Control frequently transfers between the
mutator and the root scan routine be-
cause the entire process of root scan is in-
terleaved with the mutator process. This
causes more cache mishits.

(3) When a function returns, if the new cur-
rent frame resides below return barrier,
then the mutator will be suspended and
the system proceeds root scan for a cer-
tain amount. This causes another control
transfer overhead.

(4) In our implementation on KCL, we could
not apply the technique to overwrite re-
turn addresses. Each time a function re-

turns, it must make a barrier check ex-

plicitly.
As we discussed in the previous section, (3) does
not cause a large overhead, since the possibility
of barrier traps is very low. (4) is specific to
our implementation, and therefore, we wanted
to obtain benchmark results without this over-
head. For this purpose, we prepared another
version of KCL by adding an explicit barrier
check each time a function returns. The results
on this version are listed in the “check added”
columns in Tables 1 and 2. This version re-
sulted in the same number of GC cycles and
the same time for root scan as the original s-
napshot, but longer execution time because of
the extra checks. The difference of the execu-
tion times is considered as the overhead of (4).
The difference is only 2% for boyer, but 10% for
fib. This is because each call of the fib function
makes only a small amount of job and thus the
time for extra checks is relatively large.

Since the number of GC cycles of fib is rela-
tively small, even though GC cycles are initiat-
ed at different timings, it is not reflected in the
number of cycles. The difference of execution
time is caused by the reason (2) above. Com-
pared with “check added”, the difference is 3%
for Ko = 10, but only 0.5% for Ky, = 160. The
time for root scan differs depending on Ky, but
the total time for root scan (average time mul-
tiplied by the number of GC cycles) is only 5
msec for Ky = 10 and will not affect the total
execution time. Therefore, the difference of the
total execution time is mainly caused by control
transfer.

For boyer, a large number of cells are con-
sumed and garbage collection is initiated fre-
quently. Thus the timing of GC initiation
strongly affects the number of GC cycles and
the difference is reflected to the total execution
time. For Ky = 10, the number of GC cycles
is 50% more than for Ky = 160, and the total
execution time is 33% more. In order to apply
return barrier to real systems, Ky should be
chosen carefully by considering the tradeoff of
smaller Ky, which reduces suspension time, a-
gainst larger Ky, which reduces total execution
time. On the other hand, for Ky = 160, return
barrier and snapshot do not make a large dif-
ference both on the number of GC cycles and
on the total execution time. In this experimen-
t, the suspension time is 50 psec (see Fig. 8)
for Ky = 160, which is short enough for many
real-time applications.

Return Barrier 11

Table 1 Execution results of fib

with return barrier without return barrier

Ko=10 | Ko =20 | Ko =40 | Ko =80 | Ko =160 | check added | original

total execution time [sec] 12.270 12.110 12.030 11.980 11.980 11.920 10.830
number of GC cycles 65 65 65 65 65 65 65
ave. root scan time [usec] 81.127 72.745 67.063 64.483 63.908 52.975 52.975

Table 2 Execution results of boyer

with return barrier without return barrier

Ko=10 | Ko=20 | Ko =40 | Ko =80 | Ko =160 | check added | original

total execution time [sec| 36.380 32.470 28.710 27.790 27.380 26.680 26.110
number of GC cycles 304 268 226 216 212 208 208
ave. root scan time [usec] 192.556 163.640 156.794 150.465 146.436 143.744 | 143.744

6. Related Research

Kondo proposed an incremental root scan al-
gorithm®. His algorithm also scans the stack
for a certain number, say K, of entries at a time,
but the direction of the scan is from bottom up.
Bottom-up scan is adopted in the hope that the
stack may become shorter while the lower part
of the stack is scanned. After each scan of K
entries, the next K entries are protected against
write access from the mutator. If the mutator
tries to write into the protected area, then it is
suspended and the protected area is scanned.
This algorithm has the following problems.

e Bottom-up scan is difficult to implement
for many systems, in which function frames
in the stack can be located only by travers-
ing frame links downwards. In such system-
s, stack scan requires an additional means
to distinguish ordinary data objects from
return addresses and frame pointers in the
stack.

e The mutator suffers from a large overhead,
since it has to check whether the destina-
tion is write-protected each time it writes
into the stack.

Iwai improved the algorithm® by using anoth-
er direction for stack scan. In addition, the im-
proved algorithm makes use of the paging mech-
anism of the underlying operating system in or-
der to avoid the overhead on the mutator. This
algorithm in turn has the following problems.

e It depends on the operating system, and
thus cannot guarantee real-time processing.

e The system cannot be portable, since it
contains code that depends on the paging
mechanism of the operating system.

7. Conclusions

We proposed an algorithm to scan the root

set incrementally, by introducing return barrier
to snapshot garbage collection. We have imple-
mented the proposed algorithm onto KCL, and
showed that the algorithm actually reduces sus-
pension time of the mutator to a desirable lev-
el. Because of the reasons described in section
4.2, we cannot apply the efficient implementa-
tion technique in section 2.3 for KCL. Instead,
we simulated the effect of the technique and
showed the overhead of return barrier can be
kept quite small.

The proposed algorithm scans the stack for a
small amount each time a cell is requested. If
functions return consecutively, without request-
ing new cells, several function frames will be
popped from the stack and return barrier may
suspend the mutator. For some extreme pro-
grams, the mutator is suspended periodically,
and in the worst case, the system fails real-time
processing of the application. However, the re-
sult of our experiments shows that the possibili-
ty of the mutator’s suspension by return barrier
is quite small. We believe we have established a
real-time algorithm that is effective for realistic
applications.

References

1) M. Flatt: PLZ MzScheme: Language Man-
ual, http://download.plt-scheme.org/doc/
mzscheme/.

2) R. Gabriel: Performance Evaluation of Lisp
Systems, MIT Press (1985).

3) T. Iwai and M. Nakanishi: Reduction of
Pause Time due to Snapshot Parallel GC (in
Japanese), Journal of Information Processing,
Vol. 40, No. SIG4 (May. 1999).

4) R. Jones and R. Lins: Garbage Collection,
John Wiley & Sons (1996).

5) Intel Corporation: Using the RDTSC In-
struction for Performance Monitoring, http:

12 International Lisp Conference 2002, San Francisco 2002

//www.intel.co.jp/drg/pentiumII/appnotes
/RDTSCPM1.HTM.

6) G. Kondo and M. Nakanishi: Efficiency Im-
provement of Root Insertion on Real-time
Garbage Collection (in Japanese), IPSJ SIG
Notes, PL No. 16 (Nov. 1997).

7) T. Matsui and M. Inaba: Euslisp: An Object-
Based Implementation of Lisp, Journal of In-
formation Processing, Vol. 13, No. 3 (1990).

8) Omron Information Technolory Research
Center: JeRTy, http://www. jerty.com/jerty_
e/index.html.

9) G. Steele: Common Lisp the Language, Second
Edition, Digital Press (1990).

10) T. Yuasa: Real-time garbage collection on
general-purpose machines, The Journal of Sys-
tems and Software, Vol. 11, No. 3, pp. 181-198
(Mar. 1990).

11) T. Yuasa: Design and Implementation of Ky-
oto Common Lisp, Journal of Information Pro-
cessing, Vol. 13, No. 3 (1990).

12) T. Yuasa: Real-time Garbage Collection (in
Japanese), Information Processing, Vol. 35,
No. 11, pp. 1006-1013 (Nov. 1994).

13) T. Yuasa, Y. Nakagawa, T. Komiya, and M.
Yasugi: Return Barrier, Journal of Information
Processing, Vol. 41, No. 9 (2000).

