J. SYSTEMS SOFTWARE 181
1990, 11: 181- 198

Real-Time Garbage Collection on General-Purpose

Machines

Taiichi Yuasa

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

An algorithm for real-time garbage collection is presented,
proved correct, and evaluated. This algorithm is intended
for list-processing systems on general-purpose machines,
i.e., Von Neumann style serial computers with a single pro-
cessor. On these machines, real-time garbage collection
inevitably causes some overhead on the overall execution
of the list-processing system, because some of the prim-
itive list-processing operations must check the status of
garbage collection. By removing such overhead from fre-
quently used primitives such as pointer references (e.g.,
Lisp car and cdr) and stack manipulations, the presented
algorithm reduces the execution overhead to a great ex-
tent. Although the algorithm does not support compaction
of the whole data space, it efficiently supports partial com-
paction such as array relocation.

1. INTRODUCTION

Garbage collection is the most popular method in list-
processing systems such as Lisp to reclaim discarded
list cells (cons cells in Lisp terminology). Although
there are several variations of garbage collection, they
share essentially the same scheme: Available cells are
collected together to form a freelist, from which one
cell is removed cach time the application program re-
quires a new cell. When the freclist is exhausted, the
application program is temporarily suspended and the
garbage collector program begins to run. The whole
process of the garbage collector consists of two major
phases. The mark phase determines which cells are in
use (or accessible), by traversing list structures in usc.
The sweep phase then puts all inaccessible cells into the
freelist. In addition, some list-processing systems have
the compaction phase (or relocation phase) in which all
accessible cells are moved into a contiguous memory
areca and pointer references to the relocated cells are up-

Address correspondence to Tuaiichi Yuasa, Department of Infor-
mation and Computer Science, Toyohashi University of Technol-
ogy, Tempaka-Cho, Toyohashi, 440 Japan.

© BElsevier Science Publishing Co.. Inc.
655 Avenue of the Americas, New York, NY 10010

dated appropriately. After the execution of the garbage
collector, the execution of the application program is
resumed. This kind of a garbage collector, which sus-
pends the application program, is called a stop garbage
collector.

The primary disadvantage of garbage collection is
that it periodically suspends the application program.
Roughly speaking, the time for a garbage collection is
estimated as wA + SN, where A is the number of ac-
cessible cells, N is the total number of cells, and «
and @ are some positive factors. As the application pro-
gram uses more cells, garbage collection takes longer
and thus the application program is suspended in its ex-
ccution for a longer time. As reported in Steele [14],
for typical applications, garbage collection takes scveral
seconds to several tens of seconds. It is difficult for an
interactive or real-time list-processing system to provide
adequate service when it suspends execution for such a
long time. For example, if an application program were
to control a robot in a product line of a car factory,
the robot would stop periodically while the line keeps
moving, thus yielding faulty cars.

In order to avoid these problems, several algorithms
for “‘real-time™" garbage collection have been proposed
[1.2.5.6,9, 10, 13, 14]. A real-time garbage collec-
tor runs in parallel with the application program so that
the time for each list-processing primitive is bounded
by some small constant. Most of these real-time algo-
rithms are intended for multiprocessor machines. The
basic idea is to use one processor for garbage collection
while another processor is responsible for the execu-
tion of the application program. Unfortunately, many
list-processing systems arc running on general-purpose
machines and thus these algorithms cannot be applied to
these systems. Here, general-purpose machines refer
to Von Neumann style computers with a single proces-
sor, such as the MC68000 and the VAX. For these ma-
chines, no support is expected from the underlying hard-
ware and from the firmware. Although the algorithms

0164-1212/90/$3.50

182 J. SYSTEMS SOFTWARE
1990: 11: 181-198

could be simulated on general-purpose machines, the
overall system efficiency would be reduced to a great
extent. Nowadays, Lisp machines are available as com-
mercial products, but there are many more Lisp systems
(or list-processing systems in general) in use on general-
purpose machines. It seems that many other Lisp sys-
tems will become available on general-purpose machines
in the future.

On the other hand, Baker’s real-time algorithm [1] is
inherently serial and has been implemented on single-
processor machines [12], However, this algorithm puts
an extra burden on operations of pointer references (i.e.,
car and cdr in Lisp). Implementations of this algorithm,
therefore, use special-purpose hardware [10] to achicve
moderate performance. The overhead of implement-
ing them on general-purpose machines is regarded ex-
tremely high [3}, even with the support of the firmware
[17].

This paper presents and discusses an algorithm for
real-time garbage collection suitable for list-processing
systems on general-purpose machines. This algorithm
was designed with two principles kept in mind. A real-
time garbage collector on general-purpose machines in-
evitably causes some overhead against the execution ef-
ficiency of the list-processing system. The primary rea-
son is that some of the primitive list-processing oper-
ations must check the current status of garbage collec-
tion. Such a check is unnecessary in conventional list-
processing systems with a stop garbage collector. In or-
der to reduce the total overhead due to the real-time be-
havior of the garbage collector, our first design principle
is that overhead on frequently used primitives should be
small or even nonexistent. In particular, the presented
algorithm was designed so that it does not put any over-
head on the commonly used operations of pointer ref-
erences, assignments, and stack manipulations, while it
puts an extra burden on the rarely used destructive list
operations such as rplaca and rplacd in Lisp.

The other design principle is that it should be easy to
apply the algorithm to conventional systems with a stop
garbage collector. Not all list-processing applications
require real-time behavior, but rather the total cxecu-
tion time may be more important for many applications.
Thus, we would like to have two versions of the same
list-processing system, one with a stop garbage collec-
tor and the other with a real-time one, and to have the
chance to select the best of them for each application.

In the next section, we present the basic idea of our
real-time algorithm, first by introducing a simple list-
processing system with a conventional stop garbage col-
lector, and then by applying our algorithm to this system
to make it a real-time system. The correctness proof of
the algorithm is given in Section 3, and the dynamic
behavior of the real-time system is discussed in Section

T. Yuasa

4. The algorithm is then applied to more realistic list-
processing systems: to a system with stack mechanism
in Section 5 and to a system with multiple kinds of cells
in Section 6. Finally, in Section 7, we will show that the
algorithm is easily applied to those systems with some
sort of compactifying garbage collector.

Throughout this paper, we use a Pascal-like language
as the implementation language of list-processing sys-
tems. Deviations from Pascal are as follows:

I. Type declarations are omitted if there is no fear of
ambiguity. We make it a rulc that variables x, y, z,
and p are pointer variables and variables i and j are
integer variables.

2. We allow underscores ** ™ in identifiers.

3. We use pointer arithmetic and pointer comparison,
similar to those in the C language [8]. When a pointer
D points to the ith element of an array, then the ex-
pression p + | represents a pointer to the (i + 1)th
element. Similarly, comparisons on two pointers are
defined in terms of the array index, on condition that
both pointers point to elements of the same array. For
instance, when p and ¢ point to the ith and jth ele-
ments, respectively, of an array, then p < g holds if
and only if 7 < j.

+s

2. THE ALGORITHM

In this section, we explain the basic idea of our real-
time algorithm. We first present a simple list-processing
system with a conventional stop garbage collector. This
system is simple in that it supports only a single type
of cell, cons cells, and that it does not have the stack
mechanism for program execution.

A cons cell, or simply a cell, is a record object con-
sisting of three fields: mark, car, and cdr.

type cell — record
mark : Boolean;
car : pointer;
cdr : pointer;
end

A pointer may be nil, or else it points to cither a cell or
an atom. Cells are allocated in the heap H, which is an
array of N + 1 cells.

var H : array|0..N] of cell

The system actually uses H[0] to H[N — 1] as the heap,
and thus a maximum of N cells are available in the
system. The last location of H (H[N]) is reserved so
that the expression “p + 17" is meaningful whenever
p points to a cell. We introduce two constant pointers
Hbtm and Htop, which point to the first location of the
heap (i.e., H[0]) and the last location of the heap (i.e.,

Real-Time Garbage Collection

H|N—1]), respectively. Atoms are allocated somewhere
not in the heap. To distinguish pointers to cells from
those to atoms, we use the predicate consp. consp(p)
is true if and only if the pointer p points to a cell.

The system has an array R consisting of NR pointers,
where NR is a small constant. The application program
can access and modify the contents of R by primitive
operations Lgefr and Lsetr. Lgetr(i) returns the ith el-
ement of R and Lsetr(i, p) replaces the ith element of
R with p. Pointers in R are called root pointers. Only
those cells reachable directly or indirectly from the root
pointers are regarded to be accessible. Other cells are
inaccessible. The purpose of garbage collection is to ar-
range inaccessible cells so that they may be recycled
for further use. It is the responsibility of the application
program to prevent all cells in use from being garbage-
collected unexpectedly. In particular, we assume that
only accessible pointers can be passed as arguments to
operations.

The primitive list-processing opcrations in this sys-
tem are Lcons, Lcar, Ledr, Lrplaca, Lrplacd, and Leq,
each of which corresponds to a Lisp function in the obvi-
ous way. Unlike Lisp, Lcons does not return a value, but
is a procedure that causes a side cffect. Leons(, x, y)
allocates a new cell with x and y in its car and cdr
fields and, in addition, stores the cell pointer into R|{].
For example, in order to obtain a new list consisting of
two nils, we write

Lcons(1, nil, nily;
Lcons(l, nil, Lgetr(1));

The list is then stored in R[1].

Figure | illustrates an implementation of our simple
list-processing system with a conventional stop garbage
collector. The system is initialized by init() which is
invoked once when the system begins to run. All avail-
able cells are linked through their car fields to form the
freelist whose first element is pointed to by the global
variable free list. This initialization of the freelist is
rather a convention to simplify the explanation. Avail-
able cells could be allocated directly from the heap until
the first garbage collection occurs.

The garbage collector is invoked when the freelist is
exhausted. During the mark phase, the garbage collec-
tor marks, i.c., turns to frue the mark fields of, all
accessible cells by recursively traversing list structures
by the use of the garbage collection stack ges. During
the sweep phase, the heap is scanned sequentially so
that all inaccessible cells, i.e., all non-marked cells, are
collected into the freelist. Note the use of the stack op-
erations gcs_push and ges_pop. The body of the mark
phase loop simply repeats the push and pop operations
and the actual marking is done by ges_push(x), which

J. SYSTEMS SOFTWARE 183
1990 11: 181-198

var free_list: pointer;
procedure init();
begin free_list := nil;
for p := Hbtm to Htop do
begin p”.mark := false;
p/car = free list;
free list:=p
end;
for/:=1 to NR do R[i] :=nil
end {of init };
procedure Lcons(i, x, y):
begin if free_list — nil then
begin gc(),
if frec_list == nil then error(*'no storage’)

end;
{ cell allocation }
p = frec_list;

free_list := p” car;

A

p/ car i=x;
p/edr =y,
Rlil:=p

end {of Leons };

function Lcar(x) : pointer; Lear := x/

«car;
function Ledr(x) : pointer: Ledr := x .edr:
procedure Lrplaca(x, y): x”.car := y;
procedure Lrplacd(x, y). x.cdr = y:
function Leq(x, v): Boolean: Leq:=x y:
procedure Lsetr(i, x): R[i] := x:
function Lgetr(i): pointer; Lgetr := R[/];
procedure gc():
begin { initialization }
ges_init();
for i :=1to NR do ges push(R[/]):
{ mark phase }
while not ges_empty() do
begin p := gcs_pop();
ges push(p” .car);
ges_push(p A edr)
end;
{ sweep phase }
for p := Hbtm to Hiop do
it p/\.mark then
p/.mark 1= false
else begin p” .car :=frec list;
free list:=p
end
end {of gc }:
{ primitive operations on ges }

var ges:array[1..NGCS] of pointer:
var ges top @ integer;
procedure ges init(); ges_top 1= 1;
procedure ges_push(x):
if consp(x) and (not x” mark) then
begin x "\ .mark := frue;
ges[ges_top] 1= x.
ges_top i= ges_top
end:
function ges_pop : pointer:
begin ges_top i=ges_top 1
ges_pop = ges[ges_top]
end;
function ges_cmpty : Boolean;
ges_empty = (ges_top — 1):

Figure 1. The conventional system with a stop garbage col-
lector.

184 J. SYSTEMS SOFTWARE
1990: L1: 181- 198

procedure po():
begin { iitialization }
gos it),
for i :: 1 to NR do ges push(R|i]);

{ mark phase |
while not gos cpiy() do
begin p 1= ocs pop():
while consp(p) and (not p * mark) do
begin p " mark : true:
ves push(p ™ edry;
pooopar
end
end:

{ sweep phase |
for p: Hbun te Hiop do
it p7 mark then P27 mark < false;
else begin p " car © free list:
free list: p
end
end {of go}:

Figure 2. An alternative definition of ge().

pushes x onto ges only 1l v points to a non-marked cell.
This mechanism may seem inefficient since a pointer
may be poped from ges immediately after it is pushed.
However. a slight change will overcome this inefficiency
as illustrated in Figure 2. Our intention is 1o keep the
algorithm simple and clear.

Now we modity the above system so that it becomes
a real-time system (see Figure 3).

In the real-time version, the garbage collection pro-
ceeds while the application program keeps running.
Since we assume only a single processor, the two pro-
cesses cannot proceed really in parallel. Instead, the

var frec _count @ integer;

type phases (idling, mark phasc. sweep phase);
var phase : phascs;

var sweeper : pointer;

procedure init():
begin free list := nil:
for p := Hbtm to Htop do
begin p” mark := false;
p/car = free list;
p " edr = leave me;
free list:= p
end;
free_count : =~ N
phase : = idling;
sweeper 1= Htop ¢+ 1:
fori:=1 to NR do R[i] :=nil:
ges_init()
end {of init };

procedure Lcons(Z, x, y):
begin { garbage collection dispatcher }
if phase . mark_phase then
begin mark();
if ges_empty() then phase := sweep_phase
end
elseif phasc - sweep phasc then
begin sweep();
if sweeper > Htop then phasc := idling

T. Yuasa

end
elseif trec count = M then
begin phase : - mark phase:
sweeper - Hbimy:
for /110 NR do pes pushiR]i])
end:

if free count = O then crrorino storage ™)

{eell allocation

P = ree hist:

free hst: p7 car:

free count: free count 1.

A
plcaris v
pledr: oy
A
plmark o (p oz sweeper):

RUl: p
end {of Lcons §:

procedure mark()
begin/: |
while / = A1 and (not pes cmpty()) do
begin p 2 ges pop():
gos pushep ™ car):
gos pushtp edr):
[
end
end {of mark |
procedure sweept);
begin/: 1:
while 7 = A2 and sweeper = Htop do
begin if sweeper mark then
sweeper wark - false:
elseif not sweeper” cdr leave me then
begin sweeper™ car: free list:
sweeperedr = leave me;
tree list: sweeper:
free count: free count |
end:
sweeper @ osweeper |
[A
end
end {of sweep)
procedure Lrplaca(x, v):
begin if phasc mark phase then ges pushix” .car);
xMcar: y
end;

procedure Lrplacd(x, y);
begin if phusc mark_phasc then ges push(x " .cdr);
xNedri=y
end;

Figure 3. The real-time system (operations not described here
are same as in Figure 1),

whole process of garbage collection is divided into
chunks, each of which can be executed in Iess than some
constant time, and is executed only in certain situations.
The situation we chose is when the application program
requires a new cell, i.c., when Lcons is called. This
idea is credited to Baker [1]. Since cells are requested
while garbage collection is in progress, we cannot wait
until the freelist is exhausted. Instead, a garbage col-
lection begins when the number of the freelist cells be-
comes less than a certain number M. To keep the num-

Real-Time Garbage Collection

ber of freelist cells, we introduce an integer variable
free count.

With the real-time system, however, the application
program keeps requiring cells even during the sweep
phase. If the freelist is set empty at the beginning of
the sweep phase, as was in the stop garbage collector,
then during the next call of Leons, the sweeping steps
must be repeated until a non-marked cell is found in
the heap. Since there is no small upper bound for the
time required to tind a non-marked cell. that call of
Lcons could take a fong time. Thus, our real-time sys-
tem should leave the freelist alone and collect only those
non-marked cells that are not in the treelist yet. To de-
termine whether a cell is in the freelist, we use the cdr
ficids of freelist cells. which are left unused in the stop
collector. The rule of thumb is that a non-marked cell
is in the freehist if and only if its ¢dr field has a distin-
guished pointer leave me. which is not accessed by the
application program.

The procedure mark() implements a single chunk of
the mark phase. It marks A1 cells cach time it 1s called.
with & | being a small constant. It there are less than &
cells to mark, that is, if ges becomes empty before the
body of the while statement 1s repeated &1 times, then
mark() returns immediately. Precisely speaking, there-
fore, mark() marks k1 cells as long as it is possible.
Similarly, the procedure sweep() implements a chunk of
the mark phase and takes care of A2 cells as long as it is
possible. The for control variable p used in the sweep
phasc loop of Figure 1 is replaced by the global variable
sweeper so that calls to sweep() can continually process
the whole heap. The global vartable phase keeps track
of the current state ol garbage collection. Its value is
mark phase during mark phase, sweep phase during
sweep phase, and idling otherwise.

The most important fcature of our real-time system
is that, during a sweep phase. it collects those and only
those cells that are inaccessible and are not in the freelist
at the beginning of the mark phase. Although some cells
may become garbage during the garbage collection, they
are not collected until the next garbage collection. This
feature is realized by the following properties of the
system.

1. All accessible cells at the beginning of a mark phase
arc cventually marked during the phase.

2. Newly allocated cells during a garbage collection are
never collected during the sweep phase.

The if statement

if phase = mark phase thenges push(x”.car);

in the definition of Lrplaca in Figure 3 and the similar
if statement of Lrplacd arc added to achieve the first
property. If the list structures used in the application

J. SYSTEMS SOFTWARE 185
1990: 11: 181198

program are never changed during the mark phase, then
repeated calls to mark() eventually mark all accessible
cells. However, Lrplaca and Lrplacd modify the list
structures and thus, without these if statements, there
1s the possibility that some accessible cells are left un-
marked. This is mainly because mark() cannot mark a
cell once the cell becomes nonreachable from (pointers
on) ges. For example. supposc that the following state-
ments are exccuted immediately after a garbage collec-
tion begins.

Lsetr(2, Lear(Lgetr(1)));
Lrplaca(Lgetr(l), nily.

Figure 4 illustrates the status of the relevant cells when
Lrpluca is invoked. Assume that the cell « is the only
cell that points to the cell 3. It Lrplaca simply replaced
the car field of «. then 8 would not be reachable from
ges any more and thus would loose the chance to get
marked. As the result, 8 might be regarded as a garbage
while it is still accessible. This situation cannot occur
in our system since the pointer to £ is pushed onto ges
by the statement ges push(x .car) at the beginning of
Lrplaca(x, y). In order to achieve the second property
above, we added the statement

plunark = (p = sweeper):

into Lcons(i, x, y). During cxecution of the mark
phase, this statement cffectively marks all newly allo-
cated cells. During execution of the sweep phase. this
statement marks only those newly allocated cells that are
not yet processed by sweep(). Other cells allocated dur-
ing the sweep phase need not be marked since sweep()
processes cach cell only once. Of course. these discus-
sions do not entirely justity that the system has the above
propertics. The proof s left to the next section.

Note that the real-time system causes no execution
overhead on the primitives Lear, Ledr, Lsetr, Lgetr,
and Leqg. As for Leons, calls to mark() and sweep()
can be expanded inline in the body of Lcons. Moreover,
because k1 and k2 are constants, the loops in these pro-
cedures can be expanded into straight-line code. Thus,
the essential overhead of Leons will be relatively small.
Lrplaca and Lrplacd sufter from the overhead, but these
operations arc used less frequently than other primi-
tives in actual list-processing applications. They may
be used internally for assignments to variables in those
Lisp systems that implement variable bindings by as-
sociation lists [11]. Even in such Lisp systems, local
variables in compiled programs are usually allocated on
the system stack and, as will be shown in Section 5, our
algorithm causes no execution overhead on the opera-
tion to replace the contents of the system stack. In order
to estimate the efficiency of our real-time system, we

186 1. SYSTEMS SOFTWARE T. Yuasa
1990; 11: 181-198
gcslges_topl:
RINR]:
8
310
RC21: a
R[13: 511
—>
gcs

Figure 4. The status of cells (The arrows * — ° represent
pointer references. Truth values of mark fields are represented
by 1 (for true) and O (for fulse).)

still need to analyze how frequently garbage collection
occurs. This analysis is left to Section 4.

What is as important as cxecution efficiency is the size
of primitive operations, since in many list-processing
systems some primitive operations are expanded inline
in the compiled code of application programs. Usu-
ally, calls to Lcons are not expanded inline because the
body of Lcons is relatively large. Calls to Lrplaca and
Lrplacd are rare in compiled programs. Since each of
the other primitives is of the same size in the real-time
system as in the conventional system, the real-time sys-
tem promises that the size of compiled code is kept
small.

Now we need to show the memory overhead of the
real-time system. First of all, ges needs no extra space.
As for the size of the heap, we need to analyze the
dynamic behavior of the system, which is the main issue
in Section 4.

3. PROOF OF CORRECTNESS

Our major concern of this section is to prove that the fol-
lowing theorem holds in the real-time system presented
in the previous section.

Theorem 3.1. All and only those cells that are not
accessible and are not in the freelist at the beginning of
a garbage collection are put into the freelist during the
sweep phase.

For this purpose, we first postulate some system in-
variants which characterize our real-time system. Here,
a system invarian! (or invariants, for short) is a prop-
erty of the system that holds between calls to primitive
operations. Naturally, cach invariant is proved by induc-
tion on calls to primitive operations. More precisely,
an invariant is proved first by showing that the prop-
erty holds immediately after the system is initialized by
init(), and then by showing that cach primitive opera-
tion preserves the property, assuming that a// invariants
(including the invariant to prove) hold before the primi-
tive is called. We also assume that pointer arguments to
primitive operations are all accessible. Since the com-
plete proof of each invariant is too long to fit this paper,
we only give a rough sketch of the proof. However, the
reader should keep it in mind that the proof is essentially
by induction.

The first four invariants are simple properties con-
cerned with ges and sweeper.

Invariant 3.1. gcs is empty during idling and sweep

phases.

Invariant 3.2. gcs consists only of pointers to marked
cells.

Invariant 3.3. A single pointer appears on gcs at
most once.

Invariant 3.4. The value of the variable sweeper is a
cell pointer or is equal to Hrop+1. Its value is Htop+1
during idling phase, and Hbtm during mark phase.

Real-Time Garbage Collection

Proof. Invariant 3.1 holds because ges is augmented
only by ges_ push which is invoked only in mark phase
and gcs is empty at the end of mark phase. Invariant 3.2
holds because gcs push marks a cell before it pushes
the cell pointer onto ges and no marked cell is un-
marked during mark phase. Invariant 3.3 holds because
ges_push pushes a cell pointer onto ges only when the
cell pointed to by the pointer is not marked yet, whereas
pointers already on gcs point to marked cells (Invariant
3.2). Invariant 3.4 holds because sweeper is sct to Hbtm
at the beginning of mark phase, incremented in sweep
phasc, and is Hrop+1 at the end of sweep phase.

Let us introduce some terms used in the next group of
invariants. When sweeper points to the jth cell H|[/], the
ith cell in the heap (i.e., H|i]) is said to be above the
sweeper if i = j. Othcrwise, the cell is said to be below
the sweeper. Note that, during the sweep phase, “‘below
the sweeper” and “‘above the sweeper™ mean *‘already
swept” and “‘not yet swept,” respectively. Also note
that, by Invariant 3.4, every cell is below the sweeper
during the idling phase, and every cell is above the
sweeper during the mark phase.

Let us call a cell m markable if it is not marked and
there is a path from gcs to m traversing only non-marked
cells except the first cell, which is directly pointed to
from gcs and therefore is marked. More precisely, m is
markable if and only if there is a sequence of distinct
cell pointers po, p1, -+, pn (n > 0) such that
1. po is on gcs,

2. either p;".car — p;, or p;".cdr =
pin (0 =1 <n,

3. pi".mark = false (0 < i < n), and

4. p, points to m.

The intention is that markable cells are cventually
marked during the mark phase.

The following invariants are listed together because
they depend on each other in that the proof of cach in-
variant uses the other invariants as induction hypotheses.

Invariant 3.5. /eave_me is inaccessible.
Invariant 3.6. /eave_me is not reachable from gcs.

Invariant 3.7. A cell is a freelist cell if and only if
its cdr field is leave me.

Invariant 3.8. The freelist is loop-free.

Invariant 3.9. No cell below the sweeper is marked.

Invariant 3.10. Each accessible cell above the

sweeper is either marked or markable.
Proof.

J. SYSTEMS SOFTWARE 187
1990: 11: 181 198

(Invariant 3.5). An inaccessible cell becomes acces-
sible only when it is allocated by Lcons, but Lcons
replaces the car and cdr fields of the allocated cell
with accessible cells. The allocation operation, there-
fore, does not make leave me accessible. On the other
hand, leave_me may be assigned to the cdr part of a
cell by sweep(), but that cell is inaccessible (Invariant
3.10). Thus, leave me never becomes accessible.

(Invariant 3.6). gcs. push does not make leave _me
reachable from ges because, when it is called from
mark(), it pushes pointers pointing only to alrcady
reachable cells, and, when called from clsewhere, it
pushes pointers pointing only to accessible cells but
leave _me is never accessible (Invariant 3.5). Reacha-
bility from gcs may be affected by the destructive oper-
ations of Lrplaca and Lrplacd but only accessible cells
become rcachable by these operations. Thus, leave me
never becomes reachable from gcs.

(Invariant 3.7). Invariant 3.8 makes sure that the al-
location operation of Lcons(i, x, y) removes a cell from
the freelist. By that operation, the cdr field of the re-
moved cell is replaced by an accessible cell that is dis-
tinct from leave me. Invariants 3.5-3.10 make sure that
the freelist is augmented only when sweep() encounters
a cell that is not in the freelist. In that event, sweep()
replaces the cdr tield of the cell with leave me.

(Invariant 3.8). It is clear from Invariant 3.7 that the
operation of sweep() to augment the freelist does not
cause circularity in the freelist.

(Invariant 3.9). The system never turns mark fields
of cells below the sweeper to frue: Whenever ges push
is called, sweeper = Hbtm and thus no cell is below the
sweeper. When sweeper is incremented by sweep(), the
mark ficld of the cell pointed to by sweeper is turned
Jfalse if it is true before.

(Invariant 3.10). Invariant 3.10 is proved in a way
similar to the proof of Theorem 3.1 below and is left to
the reader.

Now we are ready to prove Theorem 3.1. Figure 5 il-
lustrates the transfer of state during a garbage collection.
Each arrow represents a call to a primitive operation and
cach box represents a state. The garbage collection is
triggered by a call to Lcons in state A, which transfers
the state to B. In statc B, primitive operations are called
a certain number of times, and finally, a call to Lcons
transfers the state to C and starts the sweep phase. Sim-
ilarly, primitive operations are called a certain number
of times in state C. Finally, a call to Lcons transfers the
statc to D and this ends the garbage collection. Let us
call those cells that are either accessible or in the freelist
in state A red cells, and let us call the other cells black
cells. What we have to prove is that all and only black
cells are added to the freelist during the sweep phase.
To do this, we postulate two loop invariants.

188 J. SYSTEMS SOFTWARE T. Yuasa
1990; 11: 181-198
N N
A -1 B —>| C — D
phase phase phase phase
= idling = mark_phase = sweep_phase = idliing
Figure 5. Transfer of the state during garbage collection. 1. go is on gcs,
2. either q;".car = q;,, or g .cdr = qi

Loop Invariant B. In state B, a cell is red if and
only if it is marked, markable, or in the freelist.

Loop Invariant C. In state C, a cell above the
sweeper is red if and only if it is marked or in the
freelist.

By the definition of sweep(), it adds a cell to the
freelist if and only if it encounters a cell m that satisfies
the following conditions.

1. m is above the sweeper.
2. m is not marked.
3. m is not in the freelist.

Loop Invariant C says that m is black, and we conclude
that sweep() eventually puts all and only black cells to
the freelist. What remains to do for the proof of Theo-
rem 3.1, therefore, is to prove the two loop invariants.

Proof of Loop Invariant B. The proof is split into
two cases.

A — B: When Lcons transfers the state from A to
B, it pushes root pointers onto gcs. Those cells directly
pointed to by root pointers are marked, the other ac-
cessible cells become markable, and no other cells are
marked nor markable, since no cell was marked before
(Invariants 3.9 and 3.4). Lcons then removes one cell
from the freelist and marks it. Thus, Loop Invariant B
holds after the cell of Lcons.

B — B: We need only to show that Lcons, Lrplaca,
and Lrplacd preserve Loop Invariant B, since the other
primitive operations do not modify list structures, mark
fields, and gcs. Let us begin with Lcons. Consider the
loop body

P = gcs_pop();
ges_push(p” .car);
ges_push(p” .cdr);

of mark(). Let m be an arbitrary cell that is markable
before execution of the body, and let gg, g, - -,gn
(n > 0) be a sequence of distinct cell pointers such that

O =<i<n),
3. q;".mark = false (0 < i < n), and
4. g, points to m.

We will show that m remains markable or is marked
after execution of the loop body.

Case 1: p".car, p".cdr + q,,- - »qn. The loop body
preserves the above properties and thus # remains
markable.

Case 2: p".car = gy for some h (0 < h =< n) but
phedr#q,,---,q, or, conversely, p™.cdr = q, for
some £ (0 < h < n)but p”.car 7 q1, - ,qn. After the
execution of the loop body,

1. g is on gcs,

2. cither gq;".car = gq;,, or ¢ .cdr = qii
(h=i<n),

3. gn".mark = true,

4. q;".mark = false (h <i < n), and

5. g, points to m.

hold. That is, m remains markable if & = n and m gets
marked otherwise.

Case 3: p“.car = gqn and p".cdr = g for
some Al and h2 (0 <hl =n,0 <h2 <n). Leth =
max(h 1, h2). Then the five properties of g, --,q,
given in case 2 hold and thus, after the execution of the
loop body, either m remains markable or m is marked.

Since no cell is unmarked during the mark phase and
the loop body of mark() does not affect the freelist,
we conclude that mark preserves Loop Invariant B, and
that Lcons preserves it.

Similarly, to show that Lrplaca preserves Loop In-
variant B, it suffices to show that, for each markable
cell m, m remains markable or is marked after a call to
Lrplaca. Let qo, g1, -,q, (n >0) be a sequence of
distinct cell pointers as above.

Case 1: x".car # qo. q1,---,q,. Lrplaca preserves the
four properties of this pointer sequence and therefore m
remains markable.

Real-Time Garbage Collection

Case 2: x".car = qo. ges_push(x” .car) does nothing
because x".car”.mark = qo".mark = true (Invariant
3.2).

Case 3: x".car = q,. Since x".car” points to m,
ges_push(x” .car) turns the mark field of m true. Thus,
m gets marked after Lrplaca.

Case 4: x" .car = q; for some j (0 < j < n). After the
call of gcs push(x” .car),

1. g; is on gcs,

2. either gq;".car = q;,y or g’ cdr = gq;,
U=i<m,

3. g;".mark = false (j <i < n), and

4. g, points to m

hold. Thus, m remains markable after
ges_push(x”.car). 1f x is distinct from any g;
(J =i < n), then m obviously remains markable af-
ter the statement “x”".car:=y”. Suppose g, = x for
some h (j = h < n). If g,".cdr is distinct from gy, ,,
then g,".car = qy .y, i.e., x".car = qj,,. Thus,
q; = qn (=x".car) for 0 < j < h + 1 < n, but this
contradicts the assumption that qq, q, -, q, are dis-
tinct. Therefore, q,”.cdr = qp,,. This means that
the above properties of the sequence g;, -+, q, hold
and thus m remains markable, even after the statement
“xN.ear:i=y".

The similar discussion applies to Lrplacd and we con-
clude that the primitive opcrations preserve Loop Invari-
ant B.

Proof of Loop Invariant C. The proof is also split
into two cases.

B — C: The discussion in the proof of Loop Invariant
B above applies also to the final call to Lcons in state B,
and thus Loop Invariant B holds when the state becomes
C. Since Loop Invariant B implies Loop Invariant C,
Loop Invariant C holds when the state becomes C.

C — C: We need only to show that Lcons preserves
Loop Invariant C, since the other primitive operations,
when called in state C, do not affect the freelist, mark
fields of cells, and the value of sweeper during the
sweep phase. The allocation operation of Lcons pre-
serves Loop Invariant C because it removes one cell
from the freelist but marks it if it is above the sweeper.
Also, sweep() preserves Loop Invariant C because none
of those cells put into the freelist and none of the un-
marked cells are above the sweeper after the call of
sweeper(). Therefore, we conclude that Lcons does pre-
serve Loop Invariant C.

4. THE DYNAMIC BEHAVIOR

In this section, we analyze the dynamic behavior of our
real-time system. In particular, we are interested in the
status of the freelist during the execution of a given

J. SYSTEMS SOFTWARE 189
1990: 11: 181 198

application program. From the analysis, we postulate a
sufficient condition on the system parameters N, M. k1.
and k2 to avoid starvation, i.e., the situation that the
freelist becomes empty while the application program
requires more cells. We then use this condition to es-
timate the memory overhead of our real-time system.
Also in this section, we estimate the number of times
the garbage collector is invoked.

In order to measure the course of computation, we use
the number of times that Lcons is invoked: “‘at time ¢
means ““at the fth call to Leons.” Given an application
program, let F(f) and A(¢) be the number of freelist
cells and the number of accessible cells, respectively, at
time 7. Note that A(¢) depends on the program. but not
on the system parameters N, M, k1, and k2.

Let us trace F(¢). Clearly, F(1) = N since every cell
is in the freelist initially. Then, during the idling phase,
one cell is removed from the freelist each time Lcons
is called, but no cell is added into the freelist. Thus,
F(t) = F(t — 1) — 1. When the number of the freelist
cells becomes equal to M, the first garbage collection
begins. Suppose this happens at time ¢ = a. Then

F@a =M

Suppose that, during the first garbage collection, phase
is turned from mark_phase to sweep phase at time —
b and the garbage collection ends at time ¢ — ¢. During
the mark phase, ges_pop() is called k1 times cach time
Lcons is called. The only exception is the last call of
Leons which may call ges pop() less than k1 times.
As discussed in the previous scction, cell pointers that
are accessible at — @ are pushed onto ges exactly
once, but pointers to other cells are never pushed onto
ges. Therefore, ges pop() is called totally A(a) times
during the mark phase. Thus,

b—a=JAa)/kl]

During the sweep phase, the value of sweeper is in-
cremented by k2 each time Lcons is called. The only
exception is the last call of Lcons which may increment
sweeper by less than k2. Since sweeper is totally incre-
mented by N,

¢ —b=[N/k2]

To simplify the calculation, let us assume that N is a
multiple of k2.

c—b=N/k2

Since no cell is added into the freelist during the mark
phase,
F@t)y=F@) - —a), fora =t =b

On the other hand, the value of F(¢) during the sweep

190 J. SYSTEMS SOFTWARE
1990; 11: 181-198

phase depends on the distribution of the black cells (i.e.,
those cells that are not accessible nor in the freelist at
t = a) over the heap. For i = 0, I, --,N/k2, let
B(i) be the number of black cells among the first i + k2
cells H[O], - -, H[i k2 — 1] in the heap. B(i) gives the
number of black cells that are put into the freelist by the
first 7 calls of sweep(). The first call to sweep() occurs
attime/ = b+ 1 and thus, attime 1 (b+1 =t < ¢ +1),
B(t — b — 1) black cells have been put into the freelist.
Since one cell is removed from the freelist by cach call
of Lcons, we obtain

Fity =Fb)+But -b -1)--b),

= F@a)y+B{ - b—1)—(-a),

forb+1=t=<c il

Thus, B(i). together with F(a) (=M), N, k1, and
k2, completely defines F(t) for a =t <c¢ t 1. Al-
though the function F(r) thus defined may possibly
have negative values, the system causes the ““no stor-
age” error when the number of freelist cells (i.c., the
value of free count) is going to be negative. In order
for the first garbage collection to proceed successfully,
it is necessary and sufficient that F(1) = 0 for all ¢
@a=st=c+1).

The distribution function B(i) can be an arbitrary
function that satisfics the following conditions.

1. BO)=0

2. B(i — 1) = B(i) = B(i —
fori 1,2, - ,N/k2

3. B(N/k2) == N - A(a) - F(a) (- {number of black
cells})

1) { k2,

Since
B(i) — B(N [k2)

(BN /k2) — BN Jk2 -~ 1))

-(BG+ 1) B@)
=N - A(a) — F(a) — (N/k2 —i)y*k2
=ixk2 — A(a) — F(a)
and since B(/) is nonnegative,

0, 1 <1
B() =
ixk2 - Aa)-—-F@), d+1=i=sN/k2

liA

d

A

where d — |(A(a) + F(a))/k2|. From this, we obtain

T. Yuasa

the lower bound F,(t) of F(¢).

F(a) - (t - a),
ast=<b+d+ |

Fi(t) - Fla)y+(t ~b - 1)xk2 — A(a) - F(a))

B ([70)’

b+d+2=<t=<c+41

Note that in the extreme case that all black cells are
located at the higher part of the heap, F(¢) is identical
to Fi(¢). This means that F,(f) is the best possible
lower bound of F(f). F,(t) decreases monotonically
when @ < ¢ = b +d + 1, but increases monotonically
when b +d +2 =1 = ¢+ 1. A simple calculation says
that Fi(b +d + 1) < Funb td +2). Thus, Fin (1) takes
the smallest value when t = b + d + 1, and a sufficient
condition for F() =2 0@zt =c+ D is

F(a) — (b4 [(Ala) - F@)/k2| vr1-a)y=0 @.1)
which is equivalent to
Fla) =z (A@)=(1 k14 1/k2) 1 D/(1 — 1/k2)

Usually, it 1s difficult to estimate the value of A(a) for a
given program, but the maximum number of accessible
cells Ay, is usually relatively casy to estimate. By using
Aax, Wwe obtain the following sufficient condition for
F) = 0.

Mz (A 1/ H L/K2) + D /(L - 1/k2) 4.2)

The above discussion applies also for the second

garbage collection if F(1) = M at the beginning of

the second garbage collection. This condition is satis-

fied if F(¢) = M immediately after the first garbage
collection, i.e., if F(¢c + 1) = M. Since

Fe+1) = F(a) 4 B(c - b) (¢ -

=F(a) + (N — A(a)

- N/k2 |

é N - Anmx)

a+1)
F(a)) - [A(a)/k1]

[Ava /K] = N k2~ 1
> Nx(1] 1/k2) - Ay (1 k1) - 2
a sufficient condition for F(c + 1) = M is

Nx(l —1/k2y ~Apax x (1 4 1/k) =22 M 4.3)

The same discussion holds for successive garbage col-
lections. Therefore, we conclude the following.

Theorem 4.1. Given an application program, if our
real-time system satisfies both (4.2) and (4.3), then all
garbage collection proceeds successfully.

Real-Time Garbage Collection

Theorem 4.1 is useful to find appropriate values of M
and N for a given program. Practically, we can ignore
“+17" in (4.2) and “—2" in (4.3), since N, M, and
Amax are much larger and, moreover, (4.2) and (4.3)
are derived from the worst-case analysis. The practically
safe values are, therefore,

M = A (1 /K1 + 1/k2) /(1 — 1 /k2)
N = Ap # (1 +2/k1 — 1/(k1xk2)) /(1 — 1/k2)’

For instance, if k1 = k2 = 20, then M - 0.105A4,,.,
and N = 1.216A,,.. In comparison, for the conven-
tional system with a stop garbage collector in Figure 1,
the smallest safe value for N is A ... In this case, there-
fore, the real-time system needs 21.6% more memory
for the heap.

Now let us estimate the number of times the garbage
collector is invoked, assuming that N and M satisfy both
(4.2) and (4.3). Supposc that the ith garbage collection
begins at time ¢ = a; and it ends at 1 = ¢;. As alrcady
shown,

¢; = [Aw@) k1] + N/k2 + a;

The number of freelist cells after the ith garbage collec-
tion is
F(e; + 1) - Nx(1 —1/k2) — Aa;) [Aa)/kt] 1

Then, the system is in idling phase until £ = a@;,, and
thus,

Fiy=F(;+1)—(—c¢; - 1),
forc; + 1l =t =z a;,

Since F(a;) — M,

F(C,‘ J(l) ((1”]*(','7]):1\/[

From this, we obtain

aj,y—a;, = N - Aa;) — M, fori =1,2, --

This formula, together with the initial value of a; —
N — M + 1, defines the sequence {a, a»,---}. If we
assume that A(2) is identical to a constant A .0, then

a; = [*(N - Amcun - M) +Amcun 41

and we obtain a very rough estimation of the number of
garbage collections as

T/(N - Amcun - M)

where T is the number of times Lcons is called during
the execution of the given program. For the conventional
system with a stop garbage collector given in Figure 1,

J. SYSTEMS SOFTWARE 191
1990: 11: 181198

the sequence {a,, a2, - -} is defined by

l. ay =N+1

2. a;, —a; =N — A(a,), fori —1,2---

Again, under the assumption A(¢) = Aean. the number
of garbage collections is estimated as

T/(N - Amcun)

This expression supports the widely believed rule that
the larger N is, the fewer times the garbage collector 1s
invoked. Although this rule does not apply in some cases
(indeed, it is not difficult to find a counter example), this
rule scems to apply in most cases. Similarly, the rough
estimate for the real-time system above suggests that the
smaller M is and the larger N is, the fewer times the
garbage collector is invoked.

We have already seen that the safe values for N and
M are, respectively, 1.216A4,,.x and 0.105A4 ,.«, 1n case
k1 — k2 — 20, If we assume A« — 2Auen. then
for these values of N and M, the number of garbage
collection is about 0.827 /A, .., for the real-time sys-
tem. In contrast, with the safe valuec of N - A, for
the conventional system, the number of garbage col-
lection is about T'/A .- Thus, with these safe values
of N and M, the real-time system causes /ess garbage
collection than the conventional system. On the other
hand, it is clear that, with the same size of heap, the
real-time system causes more garbage collection than
the conventional system. For instance, with the hcap
size N - 1.216A ... the conventional system calls the
garbage collector about 0.77 /A.n times. Thus, the
real-time system causes 17% more garbage collection
than the conventional system.

5. SYSTEM STACK

In this section, we extend our real-time system so that
the application program can handle the system stack.
The system stack contains pointers and is typically used
for argument passing and variable allocation. Just like
the root array R, the system stack consists of root point-
ers. Unlike R, however, the maximum size of the system
stack VSS is assumed much larger than the size of R
and thus the system cannot take care of the pointers on
the system stack all at once when a garbage collection
begins, as will be discussed below. The primitive oper-
ations on the system stack are ss_empty(), ss_push(x).
and ss_pop(). ss_empty() returns true if the system
stack is empty, and returns false otherwise. ss_push(x)
pushes the pointer x onto the system stack. ss pop()
pops up the system stack and returns the pointer previ-
ously at the top of the system stack.

192 J. SYSTEMS SOFTWARE
1990: 11: 181-198

procedure ss_push(x);
begin SStop := SStop + 1;
R[SStop] := x
end;

function sspop : pointer;
begin ss_pop := R[SStop];
SStop :=SStop - 1
end;

function ss_empty : Boolean; ss_empty := (SStop = NR);

Figure 6. Primitive operations on the system stack.

To simplify the discussions on the system stack, we
simply expand R so that it can contain up to NR + NSS
pointers.

var R : array[l..(NR + NSS)] of pointer:

By this convention, Lsefr(i, x) and Lgetr(i) are used
also to access the system stack. A new variable SStop
keeps the index of the top of the system stack within
R. Initially, SStop is set to NR. The three primitive
operations on the system stack is defined as in Figure
6. Now, the pointers R[1],---,R|SStop] are the only
root pointers and those and only those cells that are
reachable directly or indirectly from these root pointers
are accessible.

For this model, the algorithm presented in Figure 3
correctly works, if we rewrite the for loop to initialize
garbage collection as follows.

fori := 1toSStop do gcs_push(R[i])

However, if SSrop is relatively large, then the execution
of Lcons will take a long time when phase is switched
from idling to mark_phase. This violates the real-time
property of the system. Instead of processing the root
pointers all at once, our revised system processes at
most a fixed number of root pointers each time Lcons
is called (see Figure 7). Since the contents of the Sys-
tem stack will change as computation proceeds, we need
to save the contents of the system of the stack when a
garbage collection begins. Or else, we cannot make sure
that all accessible cells at the beginning of garbage col-
lection are eventually marked during the mark phase.
For this purpose, we introduce another stack, called the
save stack, which is implemented by an array SV and
a global variable SVrop.

varSV : array[l..(NR + NSS)] of pointer;

varSVtop : integer;

When Lcons is called in idling phase, if the length of the
freelist becomes too short, then all pointers in the system
stack are copied into SV by copy system_stack(SStop)
and the value of SStop is saved into SVrop. Then, dur-

T. Yuasa

procedure Lcons(i, x, y);
begin { garbage collection dispatcher }
if phase = mark_phase then
begin mark();
if ges_empty() then
if SVtop > 0
{ processing the save stack }
then for: :=SVtop downto max(SVtop—k3, 1)
do ges_push(SV{i])
else phase := sweep_phase
end
elseif phase = sweep_phase then
begin sweep();
if sweeper > Htop then phasc := idling
end
elseif frec_count = M then
begin phase := mark_phase;
sweeper 1= Hbtm;
{ save contents of system stack }
copy_system_stack(SStop);
SViop := SStop
end;

if free_count < 0 then crror(*‘no storage’);

{ cell allocation }
p = free list;
free list := p/.car:
free_count := free count 1;
p/car:=x:
pledri=y,
p/mark ;= (p = sweeper);
Riil:=p
end {of Lcons };

Figure 7. Lcons of the real-time system with the system stack.

ing the mark phase, Lcons processes at most k3 pointers
on the save stack each time gcs becomes empty after the
call of mark(). Here, k3 is a small constant, like k£ | and
k2. The copying operation copy_system_stack(SStop)
can be directly implemented by the underlying hard-
ware, using the so-called block transfer mechanism
which almost all general-purpose machines support.
Since the size of the system stack is at most NR + NSS
and since NSS is bounded by tens of kilobytes in most
list-processing systems, we can assume that the copying
operation takes only a short time.

Primitive operations other than Lcons are the same as
those in the real-time system without the system stack.
In particular, the revised real-time system causes no ex-
tra burden on the most frequently used operations Lcar
and Lcdr. As already seen in Section 3, by expanding
mark() and sweep() inline and by expanding the loops
in these procedures into straight-line code, the essential
overhead on Lcons is relatively small. In addition, since
k3 is a constant, the for loop to process the save stack
can be also expanded into straight-line code. Moreover,
the revised system causes no execution overhead on the
stack operations including direct access to the stack en-
tities by Lsetr and Lgetr.

The correctness discussions in Section 3 apply, with

Real-Time Garbage Collection

minor changes, to the revised system. First of all, we
add an invariant.

Invariant 5.1. The save stack is empty during idling
and sweep phases.

Then, we redefine the notion of markable so that, in
addition to gcs, the save stack can be regarded as the
origin of markable cells. That is, a cell m is markable
if and only if there is a sequence of distinct cell pointers
qo. 41, ,qn (n > 0) such that

1. gg is either on gcs or on the save stack,

2. either g;".car = q;,, or q“.cdr = q;
O =zi<n),

3. g;".mark = false (0 <i = n), and

4. g, points to m.

Another change is to replace Invariant 3.2 with a
stronger condition.

Invariant 5.2. /eave_me is rcachable neither from
ges nor from the save stack.

As for the analysis in Section 4, the mark phase
may take more time than [A(a)/k1], since not only
the last but also other calls to mark() may invoke
ges_pop() less than k1 times. Let SStop0 be the value
of SStop at t = a. Assume that, during the mark
phase, gcs becomes empty (and thus some pointers
on the save stack are processed) at ¢ = dy,---,dn
(a<d < - <d, <dy; b). Clearly, n -
[SStop0/k3]. Also assume that, after t = d; (I =
1,2,---,n), ges_pop() is called e; times until the save
stack is processed next time. Then we have
di,, = max([e;/k11, 1) +d;,
When phase is turned to mark_phase at t = a, gcs
is empty. Thus, the next time Lcons is called, the save
stack is certainly processed. Therefore, dy =a+1. Let
g; and r; be, respectively, the quotient and the remainder
of e; divided by k1. Then, the time for the mark phase
is calculated as follows.

b—a
= —a)+E{i[l =i 5 n}ldiy, - di]
=1+ X{i|l =i = n}lmax(fe; /k1], 1]
=1 +3{i|lr; #0}q; + 1] +X{ilri =0&q; # 0}[q:|
+ X{ifri = g = 0}1]}
=1+ 3{i[l =i=n}lq]+X{ilrn# 0}
+ X{ijri = q; = O}l1]
=1+l =i =nllle; +r)/kl]l+n
— S{ilr;i =0&gq; # 0}1]
1 + [Aa)/k1| + [SStop0/k3]
I+ |A@)/k1] + (NR + NSS)/k3

fori =1,2,---,n

IIA

IIA

J. SYSTEMS SOFTWARE 193
1990: 11: 181-198

(E{i)PU) LA ()] means the sum of f(/) for all integer
i that satisfies P(i).) Here, to simplify the calculation,
we have assumed that (VR + NSS)/k3 is an integer.
On the other hand, the time for the sweep phase (i.e.,
¢ —b) is same as in Section 4, and (4.1) is still sufficient
for F(t) 2 0(a = t = ¢ +1). By replacing “b —a” in
(4.1) with the above upper bound, we obtain a sufficient
condition for (4.1).

M =z (Amax *(1//k1 + l/k2)
+ (NR +NSS)/k3)/(1 — 1/k2) 3.h

Since

F(c+1)=F(@)+ (N - Aa) - F(a))
- —a)—N/k2—-1= Nx(l —1/k2)
— A +(1 + 1/k 1)
~ (NR + NSS)/k3 — 1

the sufficient condition for F(¢c + 1) = M is
N (1 — 1/k2) — Apux x (1 + 1/k D)
~(NR +NSS)/k3 -1 =M (5.2)

Theorem 5.1. Given an application program for our
real-time system with the system stack, if both (5.1) and
(5.2) hold, then all garbage collection proceeds success-
fully.

Let us ignore ““—1"" in (5.2). Then the practically safe
value of NV is

Amax ¥ (1 + 1/k1 —1/(k1xk2))/(1 —1/k2)?

plus the constant

(2*%k2 — 1) x(NR + NSS)/(k3 x (k2 — 1))

In case k1 = k2 = k3 = 20, the real-time system
with the system stack needs 1.216A4,,, + 0.102(NR +
NSS) cells in the heap. In addition, the system needs
the space for the save stack which should contain up
to NR + NSS cells. Thus, the real-time system needs
0.216A 1, + 1.102(NR + NSS) more space than the
conventional system with the system stack.

6. MULTIPLE KINDS OF CELLS

So far, we have assumed that only a single type of cells
(i.e., cons cells) are available. In this section, we ex-
tend our real-time system so that it supports other kinds
of cells as well, such as symbol cells in Lisp. Usually,
cells of a same type occupy a fixed size of memory and,
therefore, if freelists are used to maintain available cells,
each cell type « has its own freelist afree_list. The sys-
tem keeps track of the maximum number of allocatable

194 J. SYSTEMS SOFTWARE
1990: 11: 181 198

cells N, for each type a. A pointer can points to a cell
of any type and, given a pointer, the system can deter-
mine the type of the cell pointed to by the pointer. In
order to simplify our discussion, we assume that cells
have two common fields type and mark: The type field
determines the type of the cell, and mark is used by
the garbage collector as before. The other fields contain
pointers, and the number of these pointer fields is fixed
for each type. For each type o, let fy,---, f, be the
names of the pointer fields. Then we have the following
primitive operations on cach type «.

1. The consing procedure Lacons(i, X1, X,),
which allocates an « cell from «free list, assigns
Xj to the f; field of the cell, and sets the pointer to
the cell into R[i].

2. The retrieval functions Lef (x),- - yLaofy (x),
similar to Lcar(x). Each Laf;(x) receives a pointer
to an « cell and returns the pointer in the f; field of
the cell.

3. The wupdate procedures Larplacf(x, y),- -,
Larplacf, (x, y), similar to Lrplaca(x, y). Each
Larplacf;(x, y) receives a pointer x to an « cell
and replaces the f; field of the cell with y.

As in Scction 2, the system initialization procedure
init() prepares freelists so that each afree list consists
of N, cells of type «. Without loss of generality, we
can assume that cells in the freelist for type « are linked
through their f| fields.

For this model with multiple cell types, our real-time
system in Figure 3 is extended as follows. Each consing
procedure Lacons(i, x,--,x,_) begins with the same
garbage collection dispatcher as that in Lcons in Figure
3, except that the dispatcher in Lacons(, x, - - - yXn,)
uses an «-specific number M, (see Figure 8). That is,
a garbage collection starts when the size of afree list
becomes less than or equal to M, for some type «.
The rest of each consing procedure is similar to that
of Lcons. Like Lcar, each retrieval function Lo Si(x)
simply returns the value of x.“f,. Like Lrplaca,
each update procedure Larplacf;(x, y) checks the cur-
rent phase before replacing x".f; with y. If the sys-
tem is currently in a mark phase, then it execcutes
ges_push(x” . f)).

procedure Larplacf;(x, y);
begin if phase = mark _phase then gcs push(x” .f;);
xNfji=y
end;

The loop body of mark() must be modified so that
it pushes all of the pointers in the pointer fields. The
procedure sweep(), when it encounters a non-marked
a cell not in the freelist, puts the cell into ofree list.
Both mark() and sweep() check the type of a cell by

T. Yuasa

procedure Lacons(i, x,, x», - X)
begin { garbage collection dispatcher }
if phase — mark_phase then
begin mark();
if ges_empty() then phase := sweep phase
end
elseif phase - sweep phase then
begin sweep():
if sweeper - Htop then phase : = idling
end
elseif «free count < M, then
begin phase := mark _phase:
sweeper = Hbtm;
for i := 1 to NR do ges_push(R[i])
end;
if afree count = 0 then error(no storage for type ™)
{ « cell allocation |}
p = afree list;
afree list:= p/ f:
afree_count 1= afree count |
ﬂA-f\ T X
phSri= o
PN S, =X
pmark i= (p = sweeper);

Rlil:=p
end {of Lcons };

Figure 8. The consing procedure for type .

the type field of the cell. The call to consp(x) must be
replaced by a call to the boolean function that returns
true if and only if its argument is a cell pointer. Other
primitive operations such as Lsetr(i, x) and Leq(x, y)
need not be changed.

The proof in Section 3 applics also to this system.
The only change we have to make is to replace Invariant
3.7 with the following:

Invariant 6.1. The freelist for each type is loop-free.
In order to make sure that each consing procedure be
executed successfully, we have to prove

Invariant 6.2. For cach type «, the freelist of type «
consists only of « cells.

But this is obvious because sweep() adds a non-
marked cell into the freelist of the type of the cell.

Let us determine the sufficient condition for success-
ful garbage collections. As in Section 4, we measure
the course of computation by the total number of times
that the consing procedures are called. Let A(f) be the
total number of accessible cells. For each cell type «,
let D, (t) be the number of times that Lacons is called,
until time /. Also, let F () and A4,(¢) be the number
of freelist cells and thc number of accessible cells, re-
spectively, of type o at time f. Obviously, at any time
t,0 = D,(t) =t and the sum of D, (¢) for all types is
equal to 7. As in Section 4, assume that a garbage col-

Real-Time Garbage Collection

lection begins at = ¢ and ends at 1 = ¢. Also assume
that phase is turned from mark_phase to sweep phase
at t = b during the garbage collection. £ ,(a) may be
larger than M,,, since the garbage collection may be
triggered by the consing procedure of the cell type other
than «.

Fqla) =z M,

The time for the mark phase and the time for the sweep
phase are the same as in Section 4.

b—-a=[A)/k1]
c—b=N/k2

Here, N is the sum of N, for all type a. As in Sec-
tion 4, we assume that N /&2 is an integer. In addition,
we assume that N, /k2 is also an integer. By the same
calculations as in Section 4, we can sce that during the
garbage collection, F () takes the smallest value

F{Y(a) - (Du(b +d t 1) - D(y(a))

att =b+d+1,whered = (N —N,)/k2+ |(Ay @)+
F . (a)/k2]. D (b +d + 1) — D.(a), which represents
the number of times that Lacons is called between { = a
andt = b+d—+1, is bounded by (b +d + 1) —a. Thus,
the sufficient condition for F (1) =z Ofora <t < ¢ +1
is

Fo@) — (b + (N — Ny)/k2
+ [(Aula) = Fo(@a)/k2] +1 a)y=0
which is equivalent to
Fo@) = (N — N2+ Ay a)/k]
+ A@)/k2 + /(1 — 1/k2)

By using A, max (maximum value of A4,(¢)), and by us-
ing A, (maximum value of A(¢)), we obtain the fol-
lowing sufficient condition for F (1) =2 0@ =t s ¢ +

1).
My = (N — N)/K2 + Ay /K |
+ Anu /K2 + 1D)/(1 - 1/k2) 6.1)
Since
Folc+1) = Fyula)+ (N, — Agla) — F(a))
-(Dy(c+ 1) - D@y =N, —Aya)
—(c—-a—-1)>N, —N/k2 - A max
— Apax Jk1 =2
the sufficient condition for F (¢ + 1) = M, is

Na 7N/k2 '*Aamux 7Amax/kl 72

I

M, (6.2)

J. SYSTEMS SOFTWARE 195
1990: 11: 181-198

Theorem 6.1. Given an application program on our
real-time system with multipie kinds of cells, if both
(6.1) and (6.2) hold for each type «, then all garbage
collection proceeds successfully.

Extension similar to those in Section 5 enable the
real-time system with multiple kinds of cells to support
the system stack and we obtain the following theorem.
Here, NSS and &3 are those introduced in Section 5.

Theorem 6.2. Given an application program on our
real-time system with multiple kinds of cells and with
the system stack, if both

My =z (N =N)/K2+ Agpax/k 1+ Aoy Jk2
+(NR +NSSY/k3) /(I - 1/k2)
and
No = N/k2 — Ay max — Apax /K 1
—(NR +NSSY/k3 -1 = M,

hold for each type «. then all garbage collection ends
successfully.

Unfortunately, the conditions of Theorems 6.1 and
6.2 are too strong. According to Theorem 6.1, it is safe
to set

Ma - ((N - Nw)/kz JfA(ymux/kl

+ Anax /K2 + 1) /(1 — 1 /k2)

for each type «, but this value of M, seems too large if
Aq max 18 much smaller than A,,,,. The primary reason
for this is that, in the above calculation, we replaced
D,(t) —D.(t") by t —('. The differencec between these
two values is quite large for those cell types that are
scarcely used by the given program. In order to obtain
a more practical estimation, we assume that the given
program “‘proportionally” uses cell types. That is, we
assume that there is a nonnegative number C,, for cach
type o« such that

I Do(t) = C, *t
2. A () =C,+A@)
3. the sum of C, for all type « is |

Under this assumption, (6.1) and (6.2) are respectively
replaced by

M, = Cy,*x((N — N)/k2
+ Apax *(L/k L+ C o /k2) + 1) /(1 —C, /k2)
and
No = Co N K2 — Apx #(Coy +C /K1)
-2xC, =M,

196 J. SYSTEMS SOFTWARE
1990 11: 181-198

Thus, a sufficient condition on N, and N for F ,(t) = 0
is

Ny~ NxQ2*Cy/k2 —C.[k2?)
2 Apax #(Co +2xCo /k1 —C2 J(k1 xk2))
+(3%Cy —2+C3 /k2)

2

Let us ignore (3+xC, — 2+C; /k2) in this inequality.
Then, by adding this inequality for all type «, we obtain
a sufficient condition on N.

N (1 —2/k2 + 1/(m xk2%))
= Amax k(1 +2/k1 — 1/(m xk1 xk2))

where m is the number of cell types. Now a practically
safe valuc of NV is

N =Anxx(1+2/kl — 1 /imxk1 xk2))/
(1 —2/k2 4+ 1/(m +k2%))

Note that, if m = 1, then the safe value is identical to
that given in Section 4. As m increases, this safc value
of N also increases. For example, N = 1.220A4,,x in
case k1 — k2 — 20 and m — 3. In this case, the real-
time system needs 22.0% more space as the heap than
the conventional system.

7. ARRAYS AND RELOCATION

Our real-time system can support arrays simply by re-
garding them as variable-length cells. The array alloca-
tion procedure Lmake_array(i, j, x), which allocates
an array of j elements with all initial elements x and as-
signs (the pointer to) it to R[/], may be defined similarly
to the consing procedures in Section 6. Laref(x, j),
which returns the jth element of (the array pointed to
by) x, and Laset(x, j, y), which replaces the jth cle-
ment of x by y, may be defined similarly to the retrieval
functions and the update procedures, respectively, pre-
sented in Section 6. In order for the execution time of
mark() to be bounded by a constant, we need special
treatment when the pointer poped by

p =gcs_pop();

points to an “‘array cell.” If mark() pushed all of the
elements of the array at once, then the real-time nature
of the system would be lost, since the number of ele-
ments in an array is not bounded by a reasonably small
constant. If we assume that the elements of an array are
allocated in consecutive locations, which is usually the
case, then the use of the save stack in Section 5 will over-
come this difficulty. That is, when mark() recognizes
that p points to an array, mark() copies the elements into
the save stack so that they may later be taken care of.

T. Yuasa

By using block transfer, the time for this copying will
be negligible. In case that the application program uses
many short arrays, it may be more efficient if mark()
itself takes care of those arrays whose sizes are smaller
than some small constant, immediately when the point-
ers to them are poped from gcs.

In many modern Lisps, arrays are treated as “‘first-
class” data types. They are objects that can be as-
signed to variables, consed into list structures, and so
on. There, it is expected that the storage occupied by
arrays that are not used any more be recycled for further
use. Unlike fixed-sized cells, simple linking of free ar-
rays may cause the situation that there is no consecutive
space large enough for a new array, while the total size
of recycled space is large enough for the array. To avoid
such a situation, the garbage collector should relocate
or compact arrays in use so that they may be packed
into a consecutive memory area.

In order to discuss how our real-time algorithm can
be applied for array relocation, we use the following
model, which is based on Minsky garbage collection
[1,4,7] restricted on arrays. Each array is represented
by a fixed-sized header and a body. The header con-
tains useful information on the array, such as the length
of the array. The elements of the array are stored in the
body. Since the size of array headers is fixed, the system
can treat array headers in the similar way as other fixed-
sized cells. In particular, array headers are allocated in
the heap and headers of non-used arrays may be linked
together to form a freelist of array headers. Array bod-
ies, on the other hand, are allocated in a separate space.
The body of an array occupies consecutive locations in
that space and the header of the array holds the first
such location. Reference to an array is performed via the
header; no pointer can directly point to array elements.
The space for array bodies is divided into two semi-
spaces. During exccution of the application program,
all array bodies are allocated in one of the semispace.
During the mark phase, when the garbage collector is
going to mark an array header, the array body is copied
into the other semispace and, at the same time, the old
location of the body stored in the header is updated. By
copying array bodies into successive locations, bodies
of accessible arrays are compacted in the “to’’ semi-
space (fospace) at the cnd of the garbage collection.
The contents in the old semispace (fromspace) are then
discarded and bodies of new arrays are allocated in the
tospace. Next time the garbage collector is invoked, the
role of the two semispaces is interchanged. The previ-
ous tospace is used as the fromspace and the previous
fromspace is used as the tospace. Note that, since the
location of an array body is stored only in the header,
this system need not leave the so-called ‘“forwarding ad-
dress’ [1,3] in array bodies.

Real-Time Garbage Collection

Application of our real-time algorithm to this model
is quite straightforward. The procedure mark() now
copies array bodies into two places: to the tospace and
to the save stack. The copying processes can be done in
a short time, by using block transfer. During garbage
collection, bodies of new arrays are allocated in the
tospace, not in the fromspace. Thus, the tospace con-
sists of copies of accessible array bodies and new array
bodies, sweep() collects non-marked (i.e., inaccessible)
array headers into a freelist, but does nothing with array
bodies.

Actually, mark() needs to copy array bodies only
into the tospace, if the system takes care of pointers
in the tospace as well as pointers in the save stack. By
making only one copy for each accessible array, the size
of the save stack can remain small, and thus we can save
memory space. As already stated, the tospace contains
newly allocated bodies as well, which need not be taken
care of. It is not difficult to distinguish copied bodies
from newly allocated bodics. One method is to add an
extra datum into the tospace, when a body is copied
from the fromspace or a body is newly allocated. Each
such datum should contain two kinds of information:
whether the following body is copied or newly allocated
and how long the body is. With this information, the
system can easily and efficiently ignore newly allocated
bodies in the tospace.

8. CONCLUSIONS AND FUTURE PLANS

We presented an algorithm for real-time garbage col-
lection in list-processing systems running on general-
purpose machines. This algorithm enables the list-
processing system to execute each list-processing prim-
itive within a small constant time and thus not to sus-
pend execution of application programs during garbage
collection. Although the execution efficiency decreases
with the real-time garbage collection, the overhead is
kept small because the algorithm puts no overhead on
frequently used primitives such as pointer references,
variable references and assignments, and stack manip-
ulations. In order to see the memory overhead of the
algorithm, we have shown sufficient conditions on the
size of the heap to keep the program running without
exhausting the freelist. These conditions are too strong
in that the size of the heap can be much smaller in ac-
tual situations. Nevertheless, they have proved that the
memory overhead of our real-time algorithm is rela-
tively small. Application of the algorithm to already ex-
isting list-processing systems is easy since it does not
require modification on the data representation. The pri-
mary disadvantage of the algorithm is that they do not
support compaction of the whole data space. However,
we have seen that the algorithm efficiently supports ar-

J. SYSTEMS SOFTWARE 197
1990: 11: 181-198

ray relocation which is highly desired in modern list-
processing systems.

The algorithm presented in this paper are planned
to be implemented in a portable Common Lisp [16]
system, called Kyoto Common Lisp [18], which is al-
ready running under several operating systems on sev-
eral general-purpose machines, including the VAX and
the MC68000. The kernel of this system is written in the
C language and with the use of preprocessor macros of
C, all versions of the system share the same source pro-
grams. This system allocates data cells in the heap and
essentially uses the so-called BIBOP (Blg Bag Of Pages)
method [15] to manage them. Variable-length data such
as arrays and hash tables (in terms of Common Lisp)
are allocated in another space and are garbage-collected
by copying compaction. Implementation of the real-time
algorithm in this system is straightforward and we ex-
pect that the same source programs can be shared also
by the future versions of the system with the real-time
garbage collector.

ACKNOWLEDGMENT

The author wishes to acknowledge the help of Reiji Nakajima who
patiently supervised this research. This research was motivated
by the implementation discussions of Kyoto Common Lisp with
Masami Hagiya. The author wishes to thank him. The author aiso
thanks Daniel Berry for his numerous comments on drafts of this
paper.

REFERENCES

1. H. G. Baker, List Processing in Real Time on a Serial
Computer, Commun. ACM 21(4), 280-294 (1978).

2. M. Ben-ari, Algorithms for On-the-fly Garbage Collec-
tion, ACM Trans. Program. Lang. Syst. 6(3), 333-344,
(1984).

3. R. A. Brooks, Trading Data Space to Reduce Time and
Code Space in Real-Time Garbage Collection on Stock
Hardware, in Conference Record of the 1984 ACM
Symposium on LISP and Functional Programming,
pp- 256-262, 1984.

4. C. J. Chency, A Nonrccursive List Compacting Algo-
rithm, Commun. ACM, 13(11), 677-678 (1970).

5. P. L. Deutsch and D. G. Bobrow, An Efficient, Incremen-
tal, Automatic Garbage Collector, Commun. ACM19(9),
522-526 (1976).

6. E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens, On-the-fly Garbage Collection:
An Exercise in Cooperation, Commun. ACM 21(11),
966-975 (1978).

7. R. R. Fenichel and J. C. Yochelson, A LISP Garbage-
Collector for Virtual-Memory Computer Systems, Com-
mun. ACM 12(11), 611-612 (1969).

8. B. W. Kernighan and D. M. Ritchic, The C Program-
ming Language, Prentice-Hall, Inc., New Jersey, 1978.

198

9.

J. SYSTEMS SOFTWARE
1990; 11:181--198

H. T. Kung and S. W. Song, An Efficient Parallel
Garbage Collection System, in /8¢th Annual IEEE Sym-
posium on Foundations of Computer Science, Provi-
dence, Rhode Island, pp. 120-131, 1977.

. H. Lieberman and C. Hewitt, A Real-Time Garbage Col-

lector That Can Recover Temporary Storage Quickly,
MIT A.1.Memo, No. 569, 1980.

. J. McCarthy, Recursive Functions of Symbolic Expres-

sions and Their Computation by Machine, Part I, Com-
mun. ACM 3(4), 184-195 (1960).

- D. A.Moon, Garbage Collection in a Large Lisp System,

in Conference Record of the 1984 ACM Symposium
on LISP and Functional Programming, pp. 235-246,
1984.

. L. A. Newman, R. P. Stallard, and M. C. Woodward,

A Parallel Compaction Algorithm for Multiprocessor

T. Yuasa

Garbage Collection, in Parallel Computing 83, North-
Holland Publishing Company, pp. 455-462, 1983.

. G. L. Steele, Multiprocessing Compactitying Garbage

Collection, Commun. ACM 18(9), 495-508 (1975).

. G. L. Steele, Data Representations in PDP-10 MacLisp.
in Proceedings of the 1977 MACSYMA User’s Con-
Jerence, Washington, D.C.. 215-224, 1977.

- G. L. Steele, etal., Common Lisp: The Language, Dig-

ital Press, 1984.

. S. Wholey and S. E. Fahlman, The Design of an Instruc-

tion Set for Common Lisp, in Conference Record of the
1984 ACM Symposium on LISP and Functional Pro-
gramming, pp. 150158, 1984,

. T. Yuasa and M. Hagiya, Kyoto Common Lisp Report,
Teikoku Insatsu Publishing, Kyoto, 1985.

	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198

