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In high-level parallel programming languages for practical parallel processing, it
is desired to be able to describe practical parallel programs with irregular compu-
tation and/or side effect easily and safely as well as to execute them on parallel
computers efficiently. Important properties for good description include the ease
of writing programs, the support of describing a variety of parallel processing and
exception handling, and restrictions on the use of harmful operations such as the
ones corresponding to goto statements in some sequential languages. This paper
shows the effectiveness of parallel languages with hierarchically structured syn-
chronization and exception handling using dynamic scope to describe a variety
of parallel processing easily and safely with a small set of language constructs.
The structured synchronization and exception handling are expressed by syntactic
constructs rather than individual operations. In structured languages using those
constructs, the user can easily picture the configuration of the current execution
context and can naturally handle an exception thrown in the course of parallel ex-
ecution. The description length and the possibility of the presence of bugs are also
reduced compared to the conventional approach that uses some synchronization
operations. This paper shows the proposed language design and its effectiveness
and also describes the language semantics and the implementation issues.

1 Introduction

High-level programming languages for parallel processing are quite useful to
develop reliable, reusable and efficient applications on various parallel archi-
tecture including shared-memory architecture and distributed-memory archi-
tecture. In high-level parallel programming languages for practical parallel
processing, it is desired to be able to describe practical parallel programs with
irregular computation and/or side effect easily and safely as well as to execute
them on parallel computers efficiently.

This paper shows the effectiveness of parallel languages with hierarchi-
cally structured synchronization and exception handling using dynamic scope
to describe a variety of parallel processing easily and safely with a small set of
language constructs. This paper also presents the design of an object-oriented
parallel language based on the hierarchical structure, the semantics of a sim-
plified structured language, the discussion on extending the synchronization
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construct to the degree of the exception handling construct, and the imple-
mentation issues.

A possible way to concisely describe parallel programs is to restrict types
(or patterns) of parallel processing and employ a language construct for the
restriction. An example is to restrict the types to data-parallel and employ a
forall construct, which reduces the possibility of the presence of bugs com-
pared to languages in which synchronization among threads must be described
explicitly; such synchronization is implicit in the forall construct. Further-
more, an exception that is thrown during the execution of a forall statement
can be properly handled as the exception of the forall statement itself. How-
ever, the restriction posed by forall is too strict to describe a variety of
parallel processing including irregular computations.

In order to describe programs for irregular problems, a number of lan-
guages, in which operations for thread creation and thread synchronization can
be described, have been designed. We admit that the explicit use of thread
creation operations is necessary since the irregularity of the problem defers the
detection of a task suitable for parallel execution until runtime. However, we
do not recommend the explicit use of thread synchronization operations, since
they make the programs difficult to understand and increase the description
length, sometimes causing bugs. This is because they prevent programs from
being hierarchically structured by connecting some distant program points in
such a way that one cannot recognize the structure in a top-down manner; the
similar situation occurs with the use of goto statements.

In the proposed language design, structured synchronization and excep-
tion handling are expressed by syntactic constructs (using dynamic scope)
rather than individual operations. This is a useful restriction in parallel lan-
guages to prevent bugs; the similar restrictions in sequential languages include
the use of a while construct rather than arbitrary control transfer by goto
statements and the use of object-oriented encapsulation rather than arbitrary
field access to simple records. That is to say, this study deals with the struc-
tured programming for parallel programming. The difference between “explicit
operations” and “syntactic constructs”, which this paper compares, can be
explained with a loop example in C language as follows: with “explicit opera-
tions”, the programmer describes a loop by putting a label and a conditional
branch around the repeatedly-executed part (to arbitrarily connect some dis-
tant program points by spit-operations) but that part cannot be considered
inside the loop in terms of the program structure, while the body of a “syn-
tactic constructs”-based while statement can be considered inside the loop in
terms of the program structure where the target of a continue statement can
be automatically determined by the nesting level in the program structure.
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In the structured languages using those syntactic constructs, the user can
easily picture a configuration of the current parallel-execution context and
can naturally handle an exception thrown in the course of parallel execution.
The type of parallel processing that our language syntax supports is fork-join
parallel in which partitioning of a given task into subtasks is irregular but the
completion of the given task can be achieved by the synchronization of the
subtask completions. Of course, we do not argue that all patterns of parallel
processing belong to fork-join type, but many patterns which have a definite
goal, such as “to get the answer” or “to be completed for the next step”, belong
to this type.

The rest of the paper is organized as follows. In Section 2, we point out
issues on the description of parallel programs. In Section 3, we describe the ef-
fectiveness of parallel languages with hierarchically structured synchronization
and exception handling using dynamic scope, and the design of an object-
oriented parallel language based on the hierarchical structure. In Section 4,
semantics of a simplified structured language is examined. In Section 5, we
discuss an extended synchronization construct to the degree of the exception
handling construct. Implementation issues are presented in Section 6. In Sec-
tion 7, we discuss the related work.

2 Issues on the description of parallel programs

In this section, we discuss expressiveness of various constructs for the descrip-
tion of parallel programs in terms of (1) conciseness of the description,® (2)
describable types of parallel processing, and (3) the ease of handling exceptions.
We use a base sequential language with the following assumptions:

e Constructs for parallel processing are explicit.
o Side-effects are permitted. (such as in C and Java)

e Fine granularity of parallel processing is permitted by language systems.

2.1 Description of parallel execution by syntactic constructs

Let us review the forall construct in terms of the three criteria. The forall
construct can be used to describe parallel processing as follows:

forall(i=1 to N) stat
where N threads are created and they execute stat in parallel, and their com-
pletions are automatically synchronized. Concurrent Pascal-style cobegin

“We will focus on the structure and contents of programs; thus, we will ignore redundancy
which simply helps the readability and error detection.
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.. .coend construct can be used to specify a distinct statement for each thread
as follows:

cobegin stat;; stats; ... staty coend
where N threads are created and each executes the corresponding stat; and
their completions are automatically synchronized.

The description by these constructs has the following features. (1) It is
concise. (2) It only supports a simple type of fork-join parallel and do not
support a variety of parallel processing including irregular computations except
for hierarchical structures that are formed by describing forall or cobegin

coend in stat recursively. (3) An exception that is thrown during the
execution of a forall statement (including parallel execution of stat) can be
properly handled as the exception of the forall statement itself. We can
define the language semantics so that, if the forall statement is wrapped by
a try-catch statement, the exception thrown during the parallel execution can
be caught by the exception handler of the try-catch statement and the whole
parallel execution is stopped without describing individual stop operations.

2.2  Thread creation and thread synchronization by operations

In order to describe a variety of parallel processing including irregular compu-
tations, a number of languages, in which operations for thread creation and
thread synchronization (including operations on locations for synchronization)
can be described, have been designed. For example, in Java language, ' a
thread can be created at runtime and various operations with the reference to
the thread are supported. Here, we consider the following operations:
thr = spawn stat;
where a thread executing stat is created and the reference to the thread is
obtained in the variable thr, and
join(thr);
where the completion of the thread referred to by thr is waited for. The
combination of these operations enable the following description of parallel
processing where the number of created threads is not fixed:
{
int i, n = O;
thread_t thr[N];
for(i=0;i<N;i++)
if(...) thr[n++] = spawn stat;
for(i=0;i<n;i++) join(thr[i]);



where a thread executing stat is created only when the condition is met and
the synchronization of the completion of every thread is expressed explicitly
by the join statement.
Similarly, in some languages which employ data-flow synchronization (i.e.,

a thread which tries to extract the value from a location is suspended until the
value of the location is determined), the following operations would be used:

ch = future exp;
where a thread evaluating ezp in parallel is created and the reference to the
location into which the result value will be stored is obtained in the variable
ch, and:

val = touch(ch);
where the value stored in the location referred to by ch is extracted to val
after the necessary suspension. The following description of parallel processing
where the number of created threads is not fixed is similar to that using spawn
and join:

{

int i, n = 0, sum 0;

int_channel ch[N];

for(i=0;i<N;i++)

if(...) ch[n++] = future exp;
for(i=0;i<n;i++) sum += touch(ch[il);
}

where a thread evaluating ezp is created only when the condition is met and
the synchronization of the completion of every thread is expressed explicitly
by the touch expression.

The description by these operations for thread creation (such as spawn,
future) and thread synchronization (such as join, touch) has the following
features. (1) It is not considered concise. In particular, the synchronization
code (the loops with join or touch in the above examples) and thread man-
agement code (the array operations with thr or ch in the above examples)
are required for the correct synchronization. The possibility of introducing
bugs increases with the too specific description.’ (2) It supports a variety of
parallel processing including irregular computations. (3) The handling of an
exception that is thrown during the execution of stat (or ezp) is subtle because
the way how the exception can be propagated outside stat is not trivial. In
order to properly handle the exception, the language has to prepare operations
for propagating the exception to the parent thread and for stopping a thread

b] experienced that, if the description of synchronization is incorrect, a serious symptom
where the bug identification is difficult may be led by a zombie thread (i.e., the programmer
considers it dead at some point while it continues its execution in practice).

5



whose result is no longer needed, then the programmer has to describe the
exception handling explicitly and carefully with the timing consideration. In
Java, operations for stopping multiple threads can be briefly described using a
ThreadGroup object to manage related threads, but the operation itself can-
not be omitted. In some language designs,? when a thread performs a join
operation to another thread in which an exception is thrown, it receives the
exception automatically, and when a thread performs the touch operation to
a location to which an exception is propagated, it receives the exception auto-
matically; however, operations for stopping threads are still required and also
propagation of an exception is deferred until the corresponding synchronization
operations are performed. Furthermore, if the language design employs explicit
operations for storing a value to a synchronization location, the operation itself
will not sometimes be executed due to an exception; thus, propagation of an
exception to a location is sometimes impossible.

In languages where thread creation and thread synchronization are de-
scribed with explicit operations, the user cannot easily picture a configuration
of the current parallel-execution context. This is because the synchronization
point is not known until the synchronization operation is actually performed;
such a synchronization point is the point where the result of the thread execu-
tion is necessary and should be known for the user to know the goal why the
thread is being executed.

2.8 Thread synchronization by syntactic constructs

To reduce the description for thread management, a syntactic construct is
useful. For example, in Cilk® which is a parallel C dialect, the cilk construct
can be used to define a cilk function, which automatically manages threads
created during the execution of the function body:
cilk void foo(...) {
int i;
for(i=0;i<N;i++)
if(...) spawn funcall;
sync;
}
where a thread executing funcall is created only when the condition is met
and the synchronization of the completions of multiple threads is expressed
explicitly by the sync statement. The threads created within the lexical scope
(i.e. the cilk function body) are automatically managed, and the sync state-
ment expresses the synchronization of the completions of all threads which
have been created before the sync statement is performed. In Cilk, thread
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creation is permitted only within cilk function bodies, and the same synchro-
nization as the sync statement is implicitly performed when returning from
cilk functions.

Compared to the description by operations for thread creation and thread
synchronization, the description by the cilk construct and the sync operation
has the following features. (1) It is more concise. Thread management code is
eliminated and synchronization code is also reduced to a single sync statement.
The possibility of introducing bugs decreases with the description length. (2)
It supports a variety of parallel processing including irregular computations to
some degree with the restriction that the programmer cannot directly specify
threads involved in some synchronization and that one cannot make a thread
to survive across function-call boundaries which means that one cannot define
an independent function to abstract several thread creations. (3) The handling
of an exception that is thrown during the execution of funcall is subtle since
the sync statement is still an operation. In Cilk, an abort statement can be
used to stop the threads that are automatically managed by the cilk construct
but the propagation of the exception is not supported. (In practice, we can
improve Cilk to support deferred propagation.)

Here we consider a new syntactic construct waitfor which expresses both
thread management (rather than by cilk) and thread synchronization (rather
than by sync operations) as follows:

waitfor stat;
where the completions of the threads created by spawn within the lexical scope
(i.e. the waitfor body similar to the cilk function body) are synchronized.
An example is as follows:
{
int i;
waitfor for(i=0;i<N;i++)
if(...) spawn funcall;
}
where a thread executing funcall is created only when the condition is met and
the synchronization of the completions of the threads created within the scope
is expressed by the waitfor construct without explicit operations (other than
waitfor construct itself).

Compared to the description in Cilk, the description by the waitfor con-
struct has the following features. (1) It is more concise since sync operations
are perfectly removed, and the possibility of introducing bugs decreases (2)
It adds the restriction that the programmer cannot change the synchroniza-
tion point at runtime. (3) An exception that is thrown during the execution
of a waitfor statement (including parallel execution of funcall) can be prop-
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erly handled as the exception of the waitfor statement itself just like a forall
statement. We can define the language semantics so that, if the waitfor state-
ment is wrapped by a try-catch statement, the exception thrown during the
parallel execution can be caught by the exception handler of the try-catch
statement and the whole parallel execution is stopped without describing in-
dividual stop or abort operations.

3 Synchronization construct and exception handling construct us-
ing dynamic scope

Dynamic scope means indefinite scope and dynamic extent, where references
to an established entity may occur anywhere and at any time in the interval
between establishment of the entity and the explicit disestablishment of the
entity. In this section, we first describe that exception handlers (i.e. catchers)
for the exception handling based on catch-throw have dynamic scope, then we
propose and examine the fork-join style synchronization where join targets
(i.e. synchronizers) have dynamic scope.

3.1 FEzception handling based on catch-throw

We first explain the description and the meaning of exception handling in Java
language. An exception can be thrown by a throw statement:
throw ezp;

where, the value of ezp must be (a reference to) an object representing the
exception. Only objects that are instances of the Throwable class (or of one of
its subclasses) can be thrown by the Java throw statement. (Some exceptions
are thrown by the Java Virtual Machine.) The exception stops the current
execution and the control is transferred to the exception handler which is
referred to using dynamic scope.

The try-catch-finally construct is prepared for exception handling. Ex-
ception handlers for an exception thrown during the execution of a try block
are described as catch clauses:

try {

... // an exception may be thrown.
}catch(Exceptionl ex1){

... // may be executed for Exceptionil
}catch(Exception2 ex2){

... // may be executed for Exception2
}finally{

... // always executed

}
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Figure 1: Structured synchronization

A try statement executes a try block. The catch clauses will not be
executed when no exception is thrown. If an exception is thrown and the try
statement has one or more catch clauses that can catch it, then control will be
transferred to the first such catch clause. A catch clause can catch and handle
an exception (object) of the specified class (or of one of its subclasses). If an
exception is not caught, the exception will be propagated to catch clauses for
the outer try block. The exception handler is referred to using dynamic scope;
thus, the nesting of try blocks is dynamic: for example, if an exception is not
caught in a method body, the exception is propagated to the calling point of
the method.

If the try statement has a finally clause, then the finally block is
executed, no matter whether the try block completes normally or abruptly
(with an exception), and no matter whether a catch clause is first given control.
If an exception is thrown during the execution of the finally block, the old
exception (if any) is discarded.

3.2 Synchronization using dynamic scope

For synchronization, join targets (i.e. synchronizers) may have dynamic scope.
More precisely, we can define that a synchronizer established by waitfor in
Section 2.3 is dynamically scoped. For example, the execution of the following
statement can be illustrated in Fig. 1:



try

Figure 2: Handling an exception which is thrown during parallel processing

waitfor {

spawn £1(Q);
£0;
}
where £1 and f are defined as follows:
f10{ ...
waitfor {... spawn f1_1(); ...}
}
£fO{ ... spawn f20; ... }

The join block in the figure represents the interval during which the body of
waitfor is executed, where £1 has a nested waitfor statement. The join tar-
get of spawn £2() executed in f is referred to using dynamic scope. The join
target of spawn f£2() will not change even if we replace f() with spawn ().
The same waitfor construct is employed in COOL # which is a parallel di-
alect of C++, where thread creation is performed by calling parallel functions
(functions defined with keyword parallel); however, COOL does not involve
exception handling.

In terms of the concerns discussed in Section 2, the description by these
constructs using dynamic scope has the following features. (1) It is concise.
(2) It supports a variety of parallel processing including irregular computations
to some degree with the restriction that that the programmer cannot change
the synchronization point at runtime. The restriction that the programmer
cannot make a thread to survive across function-call boundaries is removed
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by using dynamic scope, which means that one can define an independent
function such as f to perform spawn £2. (3) An exception that is thrown
during the execution of a waitfor statement (including parallel execution)
can be properly handled as the exception of the waitfor statement itself just
like a forall statement. We can define the language semantics so that, if
the waitfor statement is wrapped by a try-catch statement, the exception
thrown during the parallel execution can be caught by the exception handler of
the try-catch statement and the whole parallel execution is stopped without
describing individual stop or abort operations:
try{
waitfor {
spawn £1Q);
£0O;
}
}catch( ... ){

}
The execution of the above statement can be illustrated in Fig. 2. If an ex-
ception cannot be handled by a thread, the exception is propagated to the
join target of the thread, which then stops the other threads sharing the same
join target. Thus, the description is simple and the handling of the exception
during the parallel execution is not subtle.

In languages where thread creation and thread synchronization are de-
scribed with syntactic constructs, the user can easily picture a configuration
of the current parallel-execution context. This is because the synchronization
point is known when a thread is created; such a synchronization point is the
point where the result of the thread execution is necessary and is regarded as
a goal why the thread is being executed. In sequential languages, an execution
context forms a data structure, namely stack. Here we imagine an ideal control
stack which only saves control transfer information and does not rely on an
automatically-incremented program counter. The stack top holds the informa-
tion about the statement to be executed. If the execution of a function body
(consisting of statements) or a block body (consisting of (sub)statements) is
required to execute the current statement (which is popped from the stack),
those (sub)statements are pushed onto the stack. As such a stack, the user
can picture the configuration of the current execution context or can know the
goal of the current execution. On the other hand, the stack for parallel exe-
cution in Fig. 1 would be a cactus stack, which changes as is shown in Fig. 3.
Every created thread has a goal to continue the work after the join; it has its
own (sub)stack on a join frame which is used as a join target (Fig. 3). The
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Figure 3: Transition of the cactus stack based on the structured synchronization
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Figure 4: Transition of the cactus stack for an exception thrown during parallel processing
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join frame returns its control only after all the stacks on the top of it become
empty. The user can picture the configuration of the current parallel execution
context as a cactus stack. Furthermore, an exception that is thrown during
the parallel execution (Fig. 2) makes the cactus stack change as is shown in
Fig. 4. This transitions are also intuitive to the users.

So far we have not discussed the subtle cases caused by multiple threads
and finally clauses. Only one exception should survive if two or more excep-
tions reaches to the same join frame; thus, a problem is how to determine the
survivor. There is a similar case in the sequential execution: if an exception is
thrown during the execution of the finally block, the old exception (if any) is
discarded in Java. However, there is no difference among parallel exceptions
in terms of execution order. One solution to this problem would be to give a
priority to each exception. The other problem is how to precisely define the
behavior of the stopped thread. It is an elegant idea to define the behavior as
to automatically throw a special (non-user) exception stopped except for two
cases: when stopped is being thrown and when a finally block is being exe-
cuted. Although the execution of a finally block is not stopped by the other
threads, the finally block itself may throw an exception, possibly discarding
the stopped exception. However, this is not a problem since re-throwing of
stopped is automatic.

3.8 An object-oriented parallel language OPA

We are developing an object-oriented parallel language OPA, %6 where we
employ the proposed synchronization and exception handling using dynamic
scope. OPA (Object-oriented language for PArallel processing) is a parallel
extension of Java language'; we remove specifications on Threads and Monitors
from Java then add new constructs for structured synchronization and relaxed
mutual exclusion. Its design is intended to realize both ease-of-use and high
performance of parallel processing.

OPA supports irregular parallelism with dynamically forked threads. In
OPA, patterns of parallel processing can be divided into three types according
to the relation among threads, namely fork-join parallel, cooperative paral-
lel, and exclusive parallel. In fork-join parallel, we divide a task into two or
more subtasks; when a divided subtask can be executed in parallel, we can
fork and join a new thread for the subtask in a structured manner. OPA
also supports cooperative parallel processing in which the related threads syn-
chronize/communicate with each other in the course of their execution. In
addition, mutual exclusion (serialization) is necessary for concurrent accesses
to an object to read/write the object’s data consistently.
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OPA employs structured syntactic constructs using dynamic scope for the
fork-join parallel; thus, the user can easily and safely describe synchronization
among the completions of multiple threads. Objects are employed for synchro-
nization among cooperatively parallel threads which perform message passing
to the shared objects. OPA provides useful classes for synchronization, such
as an I-store class where threads executing get method are suspended until
a thread performing put method sets a value. For mutual exclusion, OPA
provides, in addition to synchronized methods, instant methods to support
efficient concurrent access to an object by automatically dividing instant
methods into read-only (RO) type and read-write (RW) type. Both RO and
RW methods read the necessary variables of the object into implicit local vari-
ables atomically at the beginning of the method. An RW method writes the
values of local variables into the object atomically at the point where the rest
of the method execution no longer updates the local variables. The compiler
automatically determines the update point with flow analysis.

The proposed structured constructs and their implementation do not de-
pends on the OPA specific language features; however, OPA provides objects
and mutual exclusion to enclose or split side effects with variable updates spa-
tially or temporally as will be mentioned in Section 4.

OPA employs a par construct and a join construct instead of spawn and
waitfor in Section 3.2. The rest of paper will use these par and join con-
structs. By attaching keyword par to a method call (or a statement), the ex-
ecution of the method call (or the statement) is performed by a newly forked
thread. By “join statement,” statement is executed by the current thread and
the completions of the new threads created during the execution of statement
are joined with the completion of the join statement:

join{
par objl1.m1(); // create a thread
par obj2.m2(); // create a thread
} // synchronize the completions of the created threads

When a value calculated by a created thread is used for the rest of com-
putation, components of a compound statement can be separated with a join
label to indicate that the part before the join label is a join block:

{
int x = par f1(n);
int y = par f2(m);
join:
zZ =33 +7y;
}

where the scope of the bindings of the variables (such as x, y) initialized by
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created threads is below the join label. The presence of the join label and
the appropriate use of variables can be checked at compile time.

The syntax for exception handling in OPA is the same as in Java. In
OPA, however, an exception thrown during parallel execution within a try
block is also properly handled as was described in Section 3.2. In the following
example, an exception thrown during the execution of obj1.m1() is examined
for the exception handler of the catch clause:

try {
join{
par objl.m1(); // create a thread
par obj2.m2(); // create a thread
} // synchronize the completions
}catch(Exceptionl ex1){ // exception handler

}

The thread which handles an exception has to execute necessary finally
clauses before the control is transfered to a catch clause. Other threads that
are stopped due to the exception have to execute necessary finally clauses
before their termination. If a thread has acquired a lock for an object, the
lock should be released as if the unlock instruction were written as a finally
clause. With an instant method, the update of the object’s data is performed
atomically at a single update point; therefore, if an exception is thrown before
the update point, the object’s data remains unchanged. OPA introduces a
vflush statement to enforce the update before throwing an exception. The
consistency control over multiple objects is not performed automatically and
must be specified explicitly.

3.4  Examples written in OPA

Some examples are presented to see we can describe a variety of parallel pro-
grams easily and safely with a small set of language constructs, such as join
and par constructs for synchronization, and try-catch-finally and throw
constructs for exception handling.

To perform a parallel method call for each element of an array objs in a
data-parallel manner, we can write the program as follows:

join for(i=0; i<objs.length; i++)
par objs[i].doit();

To calculate the sum of items held in leaf objects of a binary tree which
is composed of instances of the class BinTree in parallel, we can write the
program as follows:
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class BinTree {
int item; boolean isLeaf;
BinTree left, right;

instant int getSum(){
if( isLeaf ) return item;
elseq
int x = par left.getSum();
int y = par right.getSum();
join:
return x + y;

}
¥
}

When we can wrap the calculation with try-catch, we can naturally handle
an exception which may be thrown during the parallel execution:

try{

sum = root.getSum() ;
}catch(...){
}

To find two answers which are searched in parallel and stop the whole
execution with an exception (the fact that the answers were found), we can
write the program as follows:

// main class (to catch the exception)
public class SearchStart {

public static

void main(String argv([]) {

Table table = new Table();

try{
join{
Node node = new Node(0);
node.search(table); // start parallel search
}
System.out.println("NotFound") ;
}catch(Found excp){ // if answers are found
System.out.println("Found") ;
}
}
}
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// Node for search space
class Node {
int p;
Node(int p0){ p = p0; 2}
void search(Table table) throws Found {

if (an answer is found) table.add(the answer);
else{
Node nodel = new Node(2#p+1),
node2 = new Node(2x*p+2);
par nodel.search(table);
par node2.search(table);
}
}
}

// Table for answers (throws an exception)
class Table {
int[] answers = new int[2];
int n = 0;
instant void add(int ans) throws Found {
answers[n++] = ans;
if (n >= 2) {
vflush;
throw new Found(this); // non local exit with exception
}
}
}

4 Language semantics

The cactus stacks illustrated in Fig. 3 and Fig. 4 are considered to represent
the rest of computation from some point during parallel execution, or a hier-
archical parallel continuation. In this section, we formalize continuations for
a simplified imperative sequential language, in which only boolean values are
supported and the storage locations are directly expressed. Then we extend
the language to the parallel one and try to formalize hierarchical parallel con-
tinuations for approaching to the concept of hierarchical parallel continuations.
The similar notation to report 7 is used to describe the semantics below.
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Abstract syntax of the simplified imperative language:

I' € Com commands
E € Exp expressions
L € Loc locations
K € Con constants
T € Tag catch-throw tags
F:=L:=E|; T
| if E thenI" else I'|while Edo T
| throw T |catch T in I'| try I’ finally T’
E:=K|L
Domain equations:

€ € E = {false, true} values
oc€sS=Loc—E stores

feCc=S—A continuations
KkEK=E—=C expression continuations
p€EU=Tag —C tag environments

A answers

Semantic functions:

K : Con — E

E:Exp—>K—>C

C:Com—+U—=C—=C

C[L :=E]pf =E[E]re.N0.6(c{L > €})

Cly ; Do pf =CT1] p (C[Ta] p0)

C[if E thenT'; else 1] p 6 = E[E] (Ae.e = C[T1] p 6, C[T2]p0)
Clwhile Edo I'|p 0 = fiz 6'. (E[E] (Ne.e = C[I] p ¥, 0))
C [throw T]p 0 = p(T)

Clcatch T inT]pf =C[T]p{T — 6} 6

Cltry I'y finally I';]p 0

where p = {T1 — 64,...,T,, = 0,}

EK] k= s(K[K])

E[L] k = Ao.k(o(L))o

where o{L; — €1} denotes a function ¢’ such that dom(¢') = dom(o) U {L;}
and ¢'(L) = o(L) for L € dom(o) — {L1} and o'(L1) = € (the substitution
“o with ¢ for L;”), € — 61,65 is McCarthy conditional “if € than 6, else
6;” and {T; ~ 64,...,T,, = 6,} denotes a function p such that dom(p) =
{T1,...,T,} and p(T;) =6; for i € {1,...,n}.

The imperative language with the above denotational semantics also has
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an operational semantics in terms of contexts; the operational semantics is
defined by the following context rewriting rules where the store s € Loc — Con
is slightly different from ¢ € Loc — E.

Abstract syntax for contexts:

G € CCtxt command contexts

F € ECtxt expression contexts

C € Ctxt contexts

C:=G|E: F|protected:: C

F ::= update(L) :: G | select(I,T') :: G | then(T) :: G

G =T : G|mark(T) :: G |finally I' :: G | pmark :: G

Context rewriting rules (s, C) — (s', C'):

1. (s,L := E :: G) = (s, E :: update(L) :: G)
2. (5,71 ; T5:G) = (s, =5 :: G)
3. (s, if E thenI'; else 'y :: G) — (s, E : select(T'y, I'y) :: G)
4. (s,while Edo I':: G) — (s, E :: then(" ; while Edo T) :: G)
5. (s, throw T =: ' :: G) — (s, throw T :: G)
6. (s, throw T :: mark(T’) :: G) — (s, throw T :: G)
7. (s, throw T :: mark(T) :: G) = (s, G)
8. (s, throw T :: finally I' :: G) — (s, finally I' :: throw T :: G)
9. (s, throw T :: pmark :: G) — (s, pmark :: throw T :: G)
10. (s, catch T inT':: G) — (s, I :: mark(T) :: G)
11. (s, mark(T) :: G) — (s, G)
12. (s, try I'y finally I's :: G) — (s, Ty = £inally I it G)
13. (s, finally I' :: G) — (s, protected :: I' :: pmark :: G)
14. (s, protected :: pmark :: G) — (s, G)
15. (s, C) = (s', C') infers
(s, protected :: C) — (s/, protected :: C')
16. (s, true :: select(l'y, ') : G) — (s, 'y = G)
17. (s, false :: select(T'y, I'3) : G) = (s, T2 :: G)
18. (s, true :: then(l') = G) = (s, T = G)
19. (s, false :: then(T') : G) = (s, G)
20. (s, L F) — (s, s(L) = F)
21. (s, K :: update(L) :: G) — (s{L = K}, G)

where “throw T” discards a command or mark at the top of the stack unless
it matches “mark(T)” (rules 5-7), which may be set by “catch T in I'” on
the stack (rule 10). The execution of finally clause (rule 12) is not canceled
by an exception (rule 8) and is protected by protected and pmark (rule 13).

19



This protection is necessary only for parallel execution and basically has no
effect on the sequential semantics (rules 9,14,15).

A context can be mapped into a continuation; that is, the context (as a
data structure) represents a continuation. The same context also represents
every continuation which is used on the non-local exit with a catch-throw tag.
The single context can represent these continuations simultaneously because
the language is well structured with the proper constructs.

Now, the operational semantics of a parallel language can be described as
an extension to that of the sequential language. We employ a parallel language
where the following two commands, namely par command and join command,
are appended to the sequential language.

Abstract syntax of the parallel language:

Fi=-.-|par'|join T

We employ the following hierarchical parallel context H (instead of C) for the
context of the parallel language.

Abstract syntax of contexts of the parallel language:

H € PCtxt hierarchical parallel contexts

Gu=---|term

H:u=G|E: F|protected :: H| (H[---|H)) : G| (H]||---[[H), = G

where, the order of H in ((HJ|---||H)) is not significant (exchangeable) and
every H can be processed in parallel. {(---)) is corresponding to the join frame
in Fig. 3 and ((---)), is corresponding to the quitting join frame in Fig. 3.

Since the context rewriting rules (s, C) — (s’, C') in the sequential lan-
guage can be regarded as parallel context rewriting rules (s, H) — (s’, H') in
the parallel language, we show the only following appended part of parallel
context rewriting rules.
context rewriting rules (s, H) — (s', H'):

22. (s, join T :: G) — (s, (T :: term)) :: G)

23. (s, {par T :: G||---) :: Go) = (s, (T :: term||G||---) :: Go)

24. (s, (term||---) :: G) = (s, {{---) =+ G)

25. (5, (N = G) = (s, G)

26. (s, ((throw T :: term||---)) it Go) — (s, (throw T :: term||---)), :: Go)
27. (s, ((throw T :: term||throw T' :: term|| - - Nq :t Go)

— (s, (throw T = term||---)), :: Go)

where T # stopped
28. (s, ((throw T :: term) : Go) — (s, throw T :: Go)
29. (s, <(throw stopped :: term||---)) 1 G) = (s, (- ), = G)
30. Es, {(Dq :: G) = (s, throw stopped :: G)

31. (s, (") 5 GIl-- g 5 Go) > (s (D 52 G- =), = Go)
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32. (s, (T = G|~ -))q :: Go) = (s, ((throw stopped =: ' :: G||---)), 2 Go)
where I' # throw T

rules 31,32 are used for stopping other threads to abort the whole parallel
execution on the quitting join frame (((---)),), whereas there is no rule for
stopping protected contexts in order not to abort the execution of finally
clauses.

The parallel context rewriting rules also include the following rule to real-
ize the nondeterministic concurrent execution:

33. (s, H) = (s', H') infers
(s, (M) = G) = (", (H]|---) = G)

As is shown above, the operational semantics of the parallel language is
defined by the rewriting rules with hierarchical parallel contexts. Since the
single storage s is referenced and updated nondeterministically by multiple
threads, the hierarchical parallel continuation represented by a hierarchical
parallel context can be defined as a function from s into a set of answers (a
subset of A), where every answer will be produced by a possible sequence of
operations. However, such definition is not so helpful for understanding and
hierarchical parallel contexts themselves are more useful; for example, the effect
of throw can be well understood with a hierarchical parallel context.

5 Extending the synchronization construct

This section shows a way to extend the synchronization construct to the degree
of the exception handling construct. In contrast to the exception handling
construct where the handler for a throw statement is selected based on the tag
(i.e. class) of the exception, the join target (synchronizer) for a par statement
is fixed to the one corresponding to the nearest dynamically-enclosing join
block specified by the synchronization construct.
A simple extension enables a join target to be selected based on a tag; that
is, we can consider the dual case of catch-throw as follows:
do {
£10;
}join(Totall si, Total2 s2, ...){
... // after the synchronization
}
In the above do-join construct, the do-join statement first executes the do
block. If a thread is created during the execution of the do block and it
computes an object of one of Totall, Total2, ... classes (or of one of their
subclasses) as a result, the completion of the thread is synchronized at the join
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clause. All synchronized results which are matched with Totall are totaled
(reduced) into an object s1 of class Totall.

To compute a result with a new thread, the following pthrow construct

can be employed:
pthrow ezp;

where a new thread is created and the thread executes (evaluates) ezp to
compute a result. The join target of the new thread is selected based on the
tag that is the type of the expression erp. We cannot use the actual type
(class) of the value of exp as a tag, since the join target has to be determined
at the thread creation time. If we use the actual type of the value, unpleasant
synchronization will be taken to wait for the value to be computed. An example
of the pthrow construct is as follows:

void f1(){ ... pthrow f2(); ... }

Totall f2(){ ... return new Totall(...); 2}
where the expression £2() of type Totall is evaluated by a new thread.

A class for a synchronization tag (such as Totall) should have a reduce
method to reduce multiple results to a single result. An example is the following
Sum class:

class Sum extends Total {

internal int sum=0;

instant int getSum(){ return sum; }

instant void reduce(Sum a){

sum += a.getSum();
}
}
By “do{ ... }join(Sum s){ ... }’, multiple results ry,rs,...7, of type
Sum computed by forked threads are accumulated in a single Sum s with implicit
“s = new Sum()” and “s.reduce(r;)”. By permitting hierarchical reduction,
optimization is possible for an implementation: for example, each processor
may accumulate local results in its own sub-result for the later global accu-
mulation. For this purpose, each processor may prepare a unit element with
“new Sum()”.

Only expressions are allowed with the pthrow construct; let us enable the

par construct to return a result:

void £1(){
Totall par{ ... return new Totall(...);}
Total2 par{ ... return new Total2(...);}
}

where a new thread is created for the body of par statement and the thread
returns a result of the type specified before the keyword par.
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The use of tags for join targets has the following advantages: one is that
we can fork a thread which survives after the synchronization for the nearest
join block. We can create a thread which has indefinite extent as in Java’s
Thread class to reuse Java’s class libraries in OPA. The other advantage is
that we can exploit parallelism for a thread creation process itself.

6 Implementation issues
6.1 Implementation of synchronization

Synchronization of completions of related threads can be implemented with a
join frame and weight. Weight is represented by an integer as is often employed
in reference counting GC (garbage collection) schemes. At the beginning of
a join block, the current thread creates a join frame and sets the maximum
amount of weight to the join frame and holds the same amount of weight with
the reference to the join frame. When the current thread forks a new thread,
the current thread gives a part of weight (with the reference to the join frame)
to the new thread and keeps the remaining weight. Both of the given weight
and the remained weight must be positive. If the original amount of weight is
just 1, this condition cannot be satisfied due to weight shortage. In such cases,
a join frame with sufficient weight is created to cascade the original (parent)
join frame as in indirect reference counting GC schemes. When the weight of a
cascaded join frame becomes zero, the cascaded join frame returns weight 1 to
the parent join frame. When a thread completes its whole execution or the ex-
ecution of the current join block, it returns its weight to the corresponding join
frame. A join frame subtracts its own weight by the returned weight; therefore,
the detection of synchronization on a join frame is possible by checking if the
weight of the join frame is zero.

The extension of synchronization described in Section 5 requires a more
complex implementation. When the current thread forks a new thread, a naive
implementation would be to search the join frame corresponding to the new
thread backwards the cactus stack. An efficient implementation would be to
divide (and postpone) the searching process and to make a piece of search
every time the nearest join frame is deallocated (backwards the cactus stack);
in order to divide the search, a cascaded join frame whose parent is the target
of the search can be employed.

6.2 Implementation of exception handling

In the implementation of exception handling, an important point is how to
deal with an exception thrown during the parallel execution as we can see the
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semantics in Section 4.

If an exception can be caught in the current method, the control is trans-
fered to the catch clause (with the execution of necessary finally clauses).
Otherwise, the exception is propagated to the calling point of the current
method by returning the exception. If the exception cannot be caught within
the current thread, the exception is propagated to the corresponding join frame
and sets a quitting flag for stopping all threads on the join frame. The threads
on the quitting join frame should be stopped as early as possible except for
the execution of finally clauses.

In order to stop a thread, an implementation where the thread performs
polling would be necessary. There is a trade-off between the overhead (fre-
quency) of polling and the latency of thread stopping.® A possible optimization
technique for a single polling operation is for a processor to poll a per-processor
flag which is set for any quitting join frame and to investigate deeper part of
cactus stack only when the flag is set.

The propagation of an exception to a deeper join frame might take a long
time because of the execution of finally clauses or the synchronization on a
shallower join frame. To make the propagation virtually faster, a provisional
flag can be employed; a provisional flag of a (deeper) join frame should be set
if an exception is likely to reach the join frame. Speedup would be possible
by making the priority levels of the threads on the provisionally quitting join
frame lower. The provisional flag will be cancelled if the exception is caught
or discarded before reaching the join frame. This scheme is a sort of specula-
tive computation that speculatively suppresses (probably) useless speculative
computation.

7 Related work
7.1 Java

Parallel processing in Java® is described using the Thread class. A new thread
is created by creating a new Thread object. The join operation is provided as a
join method on the Thread object. As was described in Section 2, such explicit
join operation makes the programming complicated. Exception handling in
Java is designed to handle an exception within the current thread in which the
exception is thrown and not to propagate outside the thread.

The design of OPA is intended to keep possible compatibility with Java;
however, the synchronization and the exception handling are extended using
syntactic constructs.
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7.2 ABCL/1

Exception handling in a concurrent object-oriented language ABCL/1? is de-
scribed as methods for exception messages. In ABCL/1, every concurrent
object has a thread of control and it can send a message to a concurrent ob-
ject to invoke a method (script) on the target object concurrently. When an
exception occurs during the execution of a method of an object which receives
a message M, an exception message is generated and sent to the sender or the
reply destination of M.

Since ABCL/1 is based on concurrent objects, the exception handling is
also dealt with by specifying the behaviors of objects to send/receive an excep-
tion message. On the other hand, in OPA, exception handlers can be specified
independently of objects; furthermore, related threads can be stopped auto-
matically.

7.8 KL1 and Shoen

For a concurrent logic language KL1, “shoen” 10 is used to manage a group

of goals. A group consists of all goals which are derived from a single initial
goal. Shoens can be nested. When a goal raise an exception, the exception is
handled by the shoen. Each shoen has a report stream and a control stream
for the communication and it can propagate an exception to the outside of the
shoen.

The approaches to the exception handing in KL.1 and in OPA are similar.
However, a shoen in KL1 is a process with its own I/O and it deals with the
internal exception. On the other hand, in OPA, the exception handler deals
with the exception for a task possibly with parallel execution.

7.4  Qlisp

The earlier Qlisp!! is intended to describe a variety of parallel processing easily
and safely with a small set of language constructs. The approach of the earlier
Qlisp is very similar to our scheme; in particular, the design for stopping the
related threads was described in the report. 1! In the later Qlisp, '2 lots of
constructs are added; in particular, the qwait construct serves as the join
construct in OPA. In OPA, we consider the extension of synchronization as
was described in Section 5.

7.5 Approaches based on first class continuations

In some sequential languages, the rest of computation (continuation) can be
reified as a first class continuation. The first class continuations are useful to
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describe non local exit, exception handling and coroutines.

In parallel languages, without first class continuations, coroutines can be
realized by simply using multiple threads of control. Non local exit and ex-
ception handling can also be realized by using the catch-throw constructs of
this paper. Thus, we think the necessity of first class continuations is small in
parallel languages. We think, however, the notion of continuation is important
to describe the semantics of parallel languages.

The study by Katz and Weise!? and the study by Hieb and Dybvig'#4'5 are
Scheme-based studies on first class continuations for parallel processing. The
study by Katz and Weise proposes a scheme to navigate parallel execution and
to obtain the same result in parallel execution with future 2 and first class
continuations as in sequential execution removing futures. The study by Hieb
and Dybvig '415 proposes constructs to extract (i.e. capture and remove) a
part (subtree) of cactus stack (as in Fig. 3) and reify it as a first class datum.
The reified subtree can be called at any point. However, their construct does
not support finally clauses.

8 Conclusion

This paper showed the effectiveness of the parallel languages with hierarchically
structured synchronization and exception handling using dynamic scope to
describe a variety of parallel processing easily and safely with a small set
of language constructs; In particular, we showed that handling an exception
which is thrown during the parallel execution can be naturally expressed and
performed.

Future work includes implementing the proposed functionality into lan-
guage systems and evaluating on real parallel computers.
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