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Summary 

  These slides are a readily understandable tutorial material for beginners in 
compilers, as well as an interesting material for researchers with knowledge of 
compilers, and include the following. 

–  Structure of Java just-in-time compiler 
–  Conventionally known optimization 
–  Optimization specific to Java 
–  Optimization using runtime information  

 
  Note 

–  We introduce a wide range of optimizations, rather than details of algorithms for 
individual optimization 

–  Please study on your own if lecture time is insufficient or to gain deeper 
understanding.�
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Contents 

  Structure of Java system 
  Conventionally known optimization 
 
  Optimization specific to Java 
  Optimization using runtime information 
 
  References 

–  for your self-study�
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Structure of Java System 

  Structure of Java system 
–  Structure of Java virtual machine 
–  Structure of Java just-in-time (JIT) compiler 

  Conventionally known optimization 
  Optimization specific to Java  
  Optimization using runtime information  
�
�
�
�
�
�
�
�
�
�
�
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  JIT compiler is called selectively in the current JVM. 

Structure of Java virtual machine (JVM) 

Java 
Program 

Java virtual machine 

 

 

 

 

 

 

 

 

 

 

�

Java 
Bytecode 

javac 

class file 

Just-In-Time 
Compiler 

Memory System 
(Garbage Collection) 

Bytecode 
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Structure of Java just-in-time compiler 

  Conversion to Intermediate representation  
  Optimization 
  Code generation�

Java  
Bytecode 

Intermediate 
Representation 

conversion 

Intermediate 
representation 

Intermediate 
representation Optimization 

Intermediate 
representation 

Native Code 

Code generation 
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Conventionally known optimization 

  Structure of Java system 
  Conventionally known optimization 

–  What is optimization? 
–  Methods of optimization 

  Optimization specific to Java  
  Optimization using runtime information  
  References�
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What is optimization? 

  Purpose 
–  To reduce execution time 

 The optimization of execution time is explained in this tutorial. 
–  To reduce required memory 

 
  Major premises 

–  The meaning of the program does not change after optimization. 
 The value observable from outside of a method does not change. 

r is observable; a and b are not observable 
 Sequence of occurrence of exception does not change. 

Division and remainder may generate exception.�

int foo(int i, int j) { 
  int a, b, r; 
  a = i / j; 
  b = j % i; 
  r = a + b; 
  return r; 
} 
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Methods of optimization 

  What to optimize? 
–  Inside basic block 

 Basic block (BB) = sequence of instructions without branching and 
merging 

–  Inter basic blocks 
 Carry out dataflow analysis 

  How to optimize? 
–  Reduce the number of executed instructions 
–  Use faster instructions  
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Reduce the number of executed instructions (1) 

  Preliminary computation during compilation 
–  Constant folding 
–  Constant propagation 

  Elimination of redundant codes 
–  Dead code elimination  
–  Copy propagation 

  Reuse of execution results 
–  Common subexpression elimination 
–  Partial redundancy elimination  
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Reduce the number of executed instructions (2) 

  Deformation of method 
–  Code hoisting 

  Particularization and specialization of programs 
–  Method inlining 
–  Tail duplication 
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Constant folding 

  Constant calculation is carried out during compilation. 
–  Consideration should be given to the accuracy of floating point and 

exception condition (what is the result of -32768/-1?). 

… 
x = 2 * 3;  
… 

… 
x = 6;  
… 
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Constant propagation 

  A constant value is propagated within methods. 

x= 6;  
…  // no definition of x between these statements. 
y = x * 3; 

x = 6;  
… 
y = 18; 

x= 6 x= 6 

y = x * 3 

BB BB 

BB 
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Dead code elimination 

  Eliminate codes used to calculate values that are not unused in the method. 
  Eliminate unexecuted statements. 

… 
x = a + b;    // x is not used in later statements.  
… 
 
if (false) { 
 　 　y = 1; 
} 

… 
x = a + b;  
… 
 
if (false) { 
 　 　y = 1; 
} 
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Copy propagation 

  A simple substitution instruction is propagated to the right-hand side operand. 

x = a;   // x is defined only here. 
…        // no definition of a between these statements. 
y = x + b;  

x = a;  
… 
y= a + b; 

x= a 

z = x + c y = x + b 

BB 

BB BB 
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Common subexpression elimination 

  Reuse the values once calculated.  

x = a*b; 
…         // no definition of a between these statements. 
y = a*b + c; 

x = a*b;  
… 
y = x + c; 

x= a*b x = a*b 

y = a*b + c 

BB BB 

BB 
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Partial redundancy elimination 

  To reuse the values once calculated, move the expression to reuse the values 
in the execution path in accordance with the order of execution sequence. 

–  Care should be taken in moving the expressions involving exceptions 
(division, remainder, etc.) in Java. 

x= a*b ... 

y = a*b 

BB BB 

BB 

x= a*b 
t= x 

t = a*b 

y = t 

BB BB 

BB 
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Loop invariant code motion 

  Move loop-constants outside the loop. 
–  Care should be taken in moving the expressions involving exceptions in 

Java. 

i = 0 

x = a*b + i 
i = i + 1 

BB 

i < 10 

i = 0 
t =  a*b 

x = t + i 
i = i + 1 

BB 

i < 10 
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Code hoisting 

  Hoist the expression in accordance with the execution sequence.  
–  The expression that is used in only one of the two paths can also be 

hoisted. 
–  Care should be taken in moving the expressions involving exceptions in 

Java. 

…  

y= a*b x= a*b 

BB 

BB BB 

t = a*b  

y= t x= t 

BB 

BB BB 
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Method inlining 

  The method body is expanded at call locations. 
–  The range of applications of optimization expands. 
–  The passing of argument and resister save/recovery can be eliminated. 

… 
x = foo(a) 
… 
 
int foo(int i) { 
 　return i *i; 
}  

… 
x = (a * a); 
… 
 
int foo(int i) { 
 　return i *i; 
}  
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Tail duplication, splitting 

  Duplicate codes after a merge point of control and make specialized codes. 
–  The characteristic of the variable is determined uniquely. 

int x = … 

x = foo(x) 

if (x == 0) 

x = 0 
BB BB 

BB 

int x = … 

if (x == 0) 

x = foo(x) 

if (x == 0) 

x = 0 
BB BB 
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Use the instruction with a higher execution time. 

  Strength reduction 
  Scalar replacement 
  Register allocation�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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Strength reduction 

  Replace the operation with an equivalent instruction of the CPU with a shorter 
execution time. 

–  For example, in many CPUs, shift instruction is faster than multiplication 
and division.�

… 
x = a << 3;  
… 

… 
x = a * 8;  // Multiplication using power of two  
… 
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  Replace memory access instruction with instruction using simple variables 
–  It is expected that simple variables will be allocated to the register during 

later register allocation.  
�

Scalar replacement 

class A { 
 　int f; 
 　int g; 
} 
A a = new A(); 
a.f = 1; 
a.f = a.f * 2; 

class A { 
 　int f; 
 　int g; 
} 
A a = new A(); 
t = 1; 
t = t * 2; 
a.f = t; 
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  Allocate simple variables of a method to the registers of the CPU as much as 
possible.  

–  Observing the whole method: Graph coloring register allocator 
–  Sequentially from the beginning of the method: Linear scan register 

allocator 
 
�

Register allocation 

… 
a = 1; 
b = 2; 
c = a + 3;  
a = b 
… 

… 
R1 = 1;  　 　    // a: R1 
[mem_b] = 2;   // b: mem 
R2 = R1 + 3;    // c: R2 
R1 = [mem_b] 
… 

There are two registers to which 
a and c are allocated. 
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  Structure of Java system 
  Conventionally known optimization 
  Optimization specific to Java  

–  Performance issues specific to Java  
–  Optimization issues specific to Java  

  Optimization using runtime information  
  References 
�
�
�
�
�

Optimization specific to Java  
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  Exception check to ensure program safety 
  Type check to ensure program safety 
  Virtual method call by introduction of polymorphism 
  Reference to the field in an object by encapsulation 
  Synchronization provided by language  
�
�
�
�
�

Performance issues specific to Java  
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  Elimination of exception check 
–  Elimination of simply redundant exception check  
–  Elimination of partially redundant exception check 
–  Inverse optimization 
–  Loop versioning 

�
  Elimination of type check and type conversion 

–  Type analysis�
�
�
�
�

Optimization issues specific to Java (1) 
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  Speed up of virtual-method call 
–  Guarded devirtualization 
–  Direct devirtualization 

 
  Speed up of object reference 

–  Stack allocation by escape analysis 
–  Scalar replacement 

 
  Speed up of synchronization 

–  Speed up of synchronization operation 
–  Elimination of synchronization by escape analysis 

�
�
�
�

Optimization issues specific to Java (2) 
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  To ensure program safety,  
–  nullcheck  - to check if the object is not null 
–  bndcheck  - to check if an index is within the range of the array 
–  Others, such as division by 0  

 
  The instructions following an exception check cannot be executed before the 
exception check. 

  Elimination of exception check 
–  Eliminating comparison and branch instructions used for exception check 
–  Increasing the chance of moving instructions 

�
�
�
�

Elimination of exception check 
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  Eliminate the same exception check for the same variable�

Elimination of simply redundant exception check 
 

// no definition of a between these statements. 

nullcheck a 
x = a.f;  

… 
nullcheck a 
y = a.g; 

nullcheck a 
x = a.f;  

… 
nullcheck a 
y = a.g; 

nullcheck a 
x= a.f 

BB 
nullcheck a 

z = a.h 

BB 

nullcheck a 
z = a.h 

BB 

nullcheck a 
x= a.f 

BB 
nullcheck a 

z = a.h 

BB 

nullcheck a 
y = a.g 

BB 
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  Application of partial redundancy elimination 
–  Exception check instruction cannot be moved beyond the instruction, 

which changes the condition observable from outside a method (i.e., 
instructions with side effect, such as exception check instruction and 
method call instruction). 

–  By applying partial redundancy elimination several times, the chance of 
applying other optimizations involving code motion expands. 

�

Elimination of partially redundant exception check 
 

nullcheck a 
x = a.f*b 

BB 
 
�

BB 

nullcheck a 
x = a.f*b 

BB 

nullcheck a 
x = a.f*b 

BB 
nullcheck a 
�

BB 

nullcheck a 
x = a.f*b 

BB 
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  Ignore exception dependence and move the exception check instruction by 
partial redundancy elimination.�

Elimination of partially redundant exception check and  
inverse optimization 

nullcheck a 
x = a.f*b 

BB 
nullcheck a 
�

BB 
 
�

BB 

y = b / c 
nullcheck a 

x = a.f*b 

BB 

nullcheck a 
x = a.f*b 

BB 

y = b / c 
nullcheck a 

x = a.f*b 

BB // Exception occurs when c=0. 
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  Ignore exception dependence and move the exception check instruction by 
partial redundancy elimination. 
 
  When exception is actually detected by the moved exception check instruction, 
exception occurs at the position before being moved.�

Elimination of partially redundant exception check and  
 inverse optimization 

nullcheck a 
x = a.f*b 

BB 
nullcheck a 
�

BB 

y = b / c 
nullcheck a 

x = a.f*b 

BB 

When a is null 

Exception occurs, 
but no exception 

occurs here. 

Instructions are rewritten 
to carry out exception 
check and exception 
occurs here. 
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  Speculatively check if the range of suffixes accessed in the loop is within the 
array length immediately before the execution of the loop. 

–  When the checking is successful, a loop without exception checks is 
executed. 

–  When the checking is not successful, the original loop with exception 
checks is executed. 

�
�

Loop versioning 

for (i = s; i < e; i++) { 
 　a[i] = i;  // require 
 　 　 　 　     nullcheck and 
 　 　 　 　     bndcheck 
} 

if ((a != null) && (0<= s) && (e <= a.length)) { 
 　// optimized loop without exception checks 
 　for (i = s; i < e; i++) { 
 　 　a[i] = i; 
 　} 
} else { 
// original loop with exception checks 
for (i = s; i <e; i++) { 
 　nullcheck a; 
 　bndcheck i, a.length; 
 　a[i] = i; 
 　} 
}  
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  Type analysis 
�

Elimination of type check and type conversion 
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  Obtain the operand’s type for object reference; when it is a class or subclass of 
type check/type conversion, the type check/type conversion can be eliminated. 

–  new, instanceof, checkcast, argument, and return value are the sources of 
type inference.�

Type analysis 

Instanceof in the if statement ensures that 
x is A or a subclass of A. 　�

if (x instanceof A) { 
 　A y = (A) x; 
} 

if (x instanceof A) { 
 　A y = (A) x; 
} 
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  Guarded devirtualization 
–  Class test 
–  Method test 
–  Polymorphic Inline Cache 

 
  Direct devirtualization 

–  Type analysis 
–  On stack replacement 
–  Code patching 
–  Preexistence 

 
  Speed up of interface method call 

–  Interface Method Table 
 
 
 
 
�

Speed up of virtual method call 
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  Virtual method calls (invokevirtual, invokeinterface) are frequently used. 
–  Optimization is inhibited by a method call whose target is determined only 

at runtime.  
 
  The size of one method is relatively small due to encapsulation. 

–  The range of optimizations is narrowed. 
 
 
 　 　 　Optimization to determine the method call destination (devirtualization) is 
necessary. 
 
 
 
 
�

Virtual method call 
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  Guard: Compare to determine whether a method or inlined code can be called 
directly  

Class test and Method test 

Method test 
r0 = <receiver object> 
load  r1, offset_class_in_object(r0) 
load  r2, offset_method_in_class(r1) 
if (r2 == #address_of_paticular_method) { 
 　call paticular_method or inlined code 
} else { 
 　load  r3, offset_code_in_method(r2) 
 　call  r3 
} 

Class test 
r0 = <receiver object> 
load  r1, offset_class_in_object(r0) 
if (r1 == #address_of_paticular_class) { 
 　call paticular_method or inlined code 
} else { 
 　load  r2, offset_method_in_class(r1) 
 　load  r3, offset_code_in_method(r2) 
 　call  r3 
} 

foo(A x) { 
... 
x.m(); 
} 

An example code for virtual method call in Java 
 
r0 = <receiver object> 
load  r1, offset_class_in_object(r0)  
load  r2, offset_method_in_class(r1) 
load  r3, offset_code_in_method(r2) 
call  r3 

object 

class 
(method table) 

method 
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  The number of loads of a method test is larger by one than that of a class test; 
however, the former is more accurate. 

–  When instance of B is passed to x 
 For the class test (assuming guard at A), A!=B holds and the virtual 

method is called. 
 For the method test, &A.m()==&B.m() holds and the direct method is 

called. 

Class test and Method test 

foo(A x) { 
 　... 
 　x.m(); 
} 

Class A 
m() 

Class B 
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  To speed up the call, which has multiple call destinations, multiple guards exist. 
–  Virtual call in which multiple methods override 
–  Interface call in which multiple classes implement 

Polymorphic Inline Cache 

r0 = <receiver object> 
load  r1, offset_class_in_object(r0) 
if (r1 == #address_of_paticular1_class) { 
 　call paticular1_method or inlined code 
} else if (r1 == #address_of_paticular2_class) { 
 　call paticular2_method or inlined code 
} else if (r1 == #address_of_paticular3_class) { 
 　call paticular3_method or inlined code 
} else { 
 　load  r2, offset_method_in_class(r1) 
 　load  r3, offset_code_in_method(r2) 
 　call  r3 
} 

An example in which multiple 
methods override A.m()  

Class A 
m() 

Class B 
m() 

Class C 
m() 
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  In Java, the cost of the method call by guarded devirtualization is similar to that 
of the virtual method call. 

–  Requirement for speed up by devirtualization without guard 
 
  Method not requiring class hierarchy analysis 

–  Type analysis 
 
  Method requiring class hierarchy analysis 

–  Code patching 
–  On stack replacement 
–  Preexistence 

 

Directed devirtualization 
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  Obtain the receiver’s type for the method call; when it is determined uniquely, 
the virtual method call can be replaced with the direct method call or method 
inlining is possible. 

–  "new", "instanceof", "checkcast", arguments, and return value are the 
sources of type inference.  

Type analysis 

A x; 
if (…) { x = new A();} 
else { x = new B();}  　// B is subclass of A. 
x.m();  　Since both A and B are types reaching x.m(), the above replacement is not possible. 

A x = new A(); 
... 
x.m(); 

The type reaching 
x.m() is only A. 

r0 = <receiver object> 
call A.m()  // Direct method call 
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  Examine what method is defined at the class hierarchy of the entire program. 
  In Java, class load occurs during execution; periodical maintenance is required. 

Class hierarchy analysis 

Class A 
m() 

Class B 

Class A 
m() 

Class C 
m() 

Possible set of methods Possible set of methods 

A : {A.m()} 

B : {A.m ()} Class B 

A : {A.m(), C.m()} 

B : {A.m()} 

C : {C.m()} 
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  When the call destination method is not overridden in compilation, prepare both 
the direct method call and the indirect method call, and execute the direct method 
call. 

Code patching 

 
 
�

A x; 
… 
x.m(); // Not overridden 
… 

call A.m // Direct method call, 
after_call: 
… 
dynamic_call 
 　load  r1, offset_class_in_object(r0) 
 　load  r2, offset_method_in_class(r1) 
 　load  r3, offset_code_in_method(r2) 
 　call  r3 // Indirect method call 
 　jmp after_call 

Class A 
m() 
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  When the method is overridden by dynamic class loading, rewrite the 
corresponding code and execute the indirect method call. 

Code patching 

 
 
�

A x; 
… 
x.m(); // overridden  
… 

jmp dynamic_call 
after_call: 
… 
dynamic_call 
 　load  r1, offset_class_in_object(r0) 
 　load  r2, offset_method_in_class(r1) 
 　load  r3, offset_code_in_method(r2) 
 　call  r3 // Indirect method call 
 　jmp after_call 

Class A 
m() 

Class C 
m() 
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  When method override occurs, the code under execution is changed during 
execution, then the content of the stack is replaced and execution is continued 
from the middle of the changed code. 

On stack replacement 

foo() { 
 　A x = …; 
 　… 
 　x.m(); 
} 
m() {  m1(); } 
m1(){ … } 

Replace with the 
direct method call. 

foo () { 
 　A x =…; 
 　… 
 　<check point> 
 　A.m(); //Direct method call 
} 

When method override occurs, 
the code and frame under 
execution are changed at 
<check point>, then execution 
is continued. foo () { 

 　A x = …; 
… 
 　<check point> 
 　x.m(); // Indirect method call 
} 

Scope descriptor (foo) foo()’s 
stack and reg. 

new foo()’s 
stack and reg. 
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  When method inlining is applied, the image before inlining should be recovered 
using the image stored in the stack, which is integrated into one; therefore, 
implementation is complicated. 
�

On stack replacement 

foo () { 
 　A x = …; 
 　… 
 　x.m(); 
} 
m() {  m1(); } 
m1() { … } 

Apply method 
inlining for calling 
m() and m1(). 

foo () { 
 　A x =…; 
 　… 
 　<check point> 
 　<inlined code m() and m1()> 
} 

When method override 
occurs, the code and 
frame under execution 
are changed at <check 
point>, then execution is 
continued. 

Scope descriptor (m) foo()’s 
stack and reg. 

new m()’s 
stack and reg. 

foo () { 
A x = …; 
… 
x.m(); 
} 
 
m() {  m1(); } 
 
m1() { … } 

Scope descriptor (foo) 

Scope descriptor (m1) 

new foo()’s 
stack and reg. 

new m1()’s 
stack and reg. 
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  If it is guaranteed that the target object of the method call remains the same as 
the object determined before the execution of the calling method, the virtual 
method call can be replaced with the direct method call or method inlining is 
possible. 

Preexistence 

foo(A x) { 
 　... 
 　x.m(); 
 
} The definition of x 

reaching x.m() is that 
the arguments before 
and after the 
execution of foo have 
the same value. 

Class A 
m() 

r0 = <receiver object> 
<inlined code of A.m()> 
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  When method override occurs, the replacement should be cancelled before the 
next method call. 

Preexistence 

foo(A x) { 
 　... 
 　x.m(); 
} 

Replacement should 
be cancelled before 
the next foo() call. 

load  r1, offset_class_in_object(r0) 
load  r2, offset_method_in_class(r1) 
load  r3, offset_code_in_method(r2) 
call  r3 // Indirect method call 

Class A 
m() 

Class C 
m() 
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  The search of the class that implements a call interface is replaced by referring 
to a hash table, i.e., the interface method table (IMT), in order to speed up the 
call. 

–  Each class has an IMT, where a method to implement an interface class is 
registered. 

–  For the interface method call, IMT is referred to in order to determine the 
call destination method. 

–  In the case of hash collision, the collision is resolved by a search using 
stub during execution. 

Speed up of interface method call 

load  r1, offset_class_in_object(r0) 
load  r2, offset_IMT_in_class(r1) 
call  r2 

compiled code 

Stub: When multiple codes 
exist in one entry, they are 
sequentially compared. 

r0 

IMT 
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  Stack allocation by escape analysis 
  Scalar replacement 

Speed up of object reference 
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  If the activation of an object is closed in a certain method, the method is 
allocable to the stack instead of the heap. 

Stack allocation by escape analysis 

Class A { int f;} 
static int z; 
int foo() { 
 　A x =  new A(); 
 　z = x.f;    // x is not substituted to an instance class variable. 
 　bar(x.f);  // x is not an argument of the method call. 
 　return z; // x is not a return value of the method. 
} 

Object x is allocable to the stack. 
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  If the header of an object is out of use, the object allocated to the stack is 
replaceable with a simple variable. 

–  Instructions to use object header    virtual method call, type check, 
synchronization  

Scalar replacement 

Class A { int f;} 
static int z; 
int foo() { 
 　A x =  new A(); 
 　z = x.f; 
 　bar(x.f);  
 　return z; 
} 

Object x is allocable to a stack. 
Class A { int f;} 
static int z; 
int foo() { 
 　t = 0; 
 　z = t; 
 　bar(t);  
 　return z; 
} 
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  Speed up of synchronization operation 
  Elimination of synchronization by escape analysis 

Speed up of synchronization 
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  When synchronization between threads does not result in collision, use the 
high-speed synchronization instruction (compare and swap) of CPU, instead of 
the synchronization of OS. 

Speed up of synchronization operation 

Lock operation by MyThread 
CompareAndSwap(Lockword, 0, MyThread) 

Lock operation by OtherThread 
 (Collision of Lock) 

Unlock operation by MyThread 
Lockword = 0; Synchronization 

control structure 

0 Lockword 0 My Thread 0 Monitor ID 1 

OS Lock 

… 

Object 
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  When an object does not escape from a certain method, the synchronization 
related to the object can be eliminated. 

–  For new Java memory model, refer to JSR 133. 

Elimination of synchronization by escape analysis 

Class A { int f;} 
static int z; 
int foo() { 
 　A x =  new A(); 
 　synchronized (x) { 
 　 　z = x.f; 　// x is not substituted to an instant class variable. 
 　} 
bar(z);  　 　 // x is not an argument of the method call. 
return z;    // x is not a return value of the method. 
} 

Synchronization 
related to object x 
can be eliminated. 

Class A { int f;} 
static int z; 
int foo() { 
 　A x =  new A(); 
 　synchronized (x) { 
 　 　z = x.f;  
 
 　} 
 　bar(z);  
 
 　return z; 
} 
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  Structure of Java system 
  Conventionally known optimization 
  Optimization specific to Java  
  Optimization using runtime information  

–  Framework for using runtime information 
–  Method for acquiring runtime information 
–  Usable runtime information 
–  Method of optimization 

  References 

Optimization specific to Java  
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  The premise is that the system is recompilable. 

Framework for using runtime information 

 
Execution code 

 
Runtime information 

Required runtime information 

System for 
acquiring runtime 

information 

 
Controller 

 

 
Compiler 

 

Compiled code 

Compile command 
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Method for acquiring runtime information 
  Sampling  - detection of the method and code, which are frequently executed 

–  Record log when the execution proceeds to predetermined points (such as 
entrance of method, at the timing of jump to the beginning of a loop) in the 
compiled code. 

–  Obtain the execution address in the interruption handler using OS timer 
interruption. 

  Instrumentation   - detection of value under execution 
–  Generate codes to record the value in the compiled codes. 

  Hardware performance monitor counter  - detection of cache miss 
–  Read the value (such as cache miss) of the performance monitor provided 

by CPU.�
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Usable runtime information 
  Sampling 

–  Methods frequently executed 
–  Execution path in the method frequently executed  
–  Call stack with high rate of exception occurrence 

  Instrumentation 
–  Argument transferred to method 
–  Number of loop iterations 

  Hardware performance monitor counter 
–  Load instruction in which cache miss occurs and the corresponding 

address are monitored.�
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Method of optimization 
  Re-compile 
  Use frequency information of path 

–  Method inlining 
–  Code reordering 

  Specialization 
  Prefetch 
  Relocation of objects�
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Re-compile 
  The method frequently executed is recompiled by increasing the level of 
optimization. 

–  Apply time-consuming optimization. 
–  Method inlining is carried out along the frequently executed call path. 
–  Method inlining is carried out along the call path with frequent exception 

occurrence. 
 Reduction in overhead for exception processing�
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Code reordering 
  BB codes frequently executed are stored in the neighborhood. 

–  Reduce cache miss 
–  Reduce branch estimation miss 

A 

90 

B C 

D 

15 

E F 

10 

85 

G 

A 
B 

D 

F 
G 

C 

E 
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Specialization, Customization 
  Specialized codes are generated on the basis of a constant obtained by 
instrumentation. 

–  Integer, real number 
 Constant propagation 
 Dead code elimination 

–  Type of object 
 Elimination of type check 
 More accurate class hierarchy analysis by determining the receiver 

type 
–  Length of array  

 Elimination of array index check 
 Simplification of loop and loop inlining 

  (Slow) generic code should also be prepared. 
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Prefetch 
  Prior to load instruction inducing data cache or TLB (translation lookaside 
buffer ; buffer used for conversion from logical address to physical address) miss, 
execute data load instruction to prevent the miss. 

TokenLoop: 
 　for (int i = 0; i < tv.ptr; i++) { 
 　 　Token tmp = tv.v[i]; 
 　 　tmpNext = spec_load (&tv.v[i+1]);  　// tmp of next iteration 
 　 　prefetch (tmpNext + offset(facts)); 　// prefetch of facts 
 　 　prefetch (tmpNext + offset(facts) + c);  // prefetch of facts array 
 　 　for (int j = 0; j < t.size; j++) 
 　 　 　if (!t.facts[j].equals (tmp.facts[j])) 
 　 　 　 　continue TokenLoop; 
 　 　return tmp; 
 　 }  

Slide from [Inagaki03] 
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Relocation of objects 
  Relocate related objects in the neighbourhood during GC to reduce cache miss. 

–  The optimal location depends on the sequence of access. 

Class A { 

 　B  y; 

 　C  z; 

} 

Class B { 

 　String s; 

} 

Class C { 

 　String s; 

} 

B C A String String 

B C A String String 

Memory address 
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Our research outcome 
  JIT compiler 

–  Method invocation optimization[OOPSLA00][JVM02] 
–  Exception optimization[ASPLOS00][OOPSLA01][PACT02] 
–  Profiling based optimization[JG00][PLDI03][PACT03] 
–  Float optimization[JVM02][ICS02] 
–  64bit architecture optimization[PLDI02] 
–  Register allocation[PLDI02] 
–  Data prefetch[PLDI03] 
–  Instruction Scheduling[CGO03] 
–  Compiler overview[JG99][IBMSJ00][OOPSLA03][IBMSJ04] 

  Runtime systems 
–  Fast lock[OOPSLA99][OOPSLA02][ECOOP04][PACT04] 
–  Fast interpreter[ASPLOS02] 

 
Please visit 
http://www.research.ibm.com/trl/projects/jit/pub_int.htm 
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